Self-consistent check of the validity of Gibbs calculus using dynamical variables View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-07

AUTHORS

Dominique Escande, Holger Kantz, Roberto Livi, Stefano Ruffo

ABSTRACT

The high- and low-energy limits of a chain of coupled rotators are integrable and correspond respectively to a set of free rotators and to a chain of harmonic oscillators. For intermediate values of the energy, numerical calculations show the agreement of finite time averages of physical observables with their Gibbsian estimate. The boundaries between the two integrable limits and the statistical domain are analytically computed using the Gibbsian estimates of dynamical observables. For large energies the geometry of nonlinear resonances enables the definition of relevant 1.5-degree-of-freedom approximations of the dynamics. They provide resonance overlap parameters whose Gibbsian probability distribution may be computed. Requiring the support of this distribution to be right above the large-scale stochasticity threshold of the 1.5-degree-of-freedom dynamics yields the boundary at the large-energy limit. At the low-energy limit, the boundary is shown to correspond to the energy where the specific heat departs from that of the corresponding harmonic chain. More... »

PAGES

605-626

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02188677

DOI

http://dx.doi.org/10.1007/bf02188677

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003642477


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aix-Marseille University", 
          "id": "https://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Equipe Turbulence Plasma de l'URA 773, CNRS, Universit\u00e9 de Provence, Institut Mediterran\u00e9en de Technologie, Ch\u00e2teau-Gombert, F-13451, Marseille, France", 
            "DRFC, Centre d'Etudes de Cadarache, 13108, Saint Paul lez Durance Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Escande", 
        "givenName": "Dominique", 
        "id": "sg:person.01243642262.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243642262.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Fachbereich Physik, Bergische Universit\u00e4t-Gesamthochschule Wuppertal Gauss, Strasse 20, D-42097, Wuppertal 1, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kantz", 
        "givenName": "Holger", 
        "id": "sg:person.0671621336.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671621336.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bologna", 
          "id": "https://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Bologna, and INFN and INFM, 2, I-40126, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Livi", 
        "givenName": "Roberto", 
        "id": "sg:person.0772676522.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772676522.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florence", 
          "id": "https://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "Dipartimento di Energetica, Universit\u00e0 di Firenze, I-50123, Firenze", 
            "INFN and INFM, Sezione di Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruffo", 
        "givenName": "Stefano", 
        "id": "sg:person.01365701241.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365701241.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02188678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007649376", 
          "https://doi.org/10.1007/bf02188678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02188678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007649376", 
          "https://doi.org/10.1007/bf02188678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(85)90019-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012541626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(85)90019-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012541626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01019687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012658600", 
          "https://doi.org/10.1007/bf01019687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02723539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030151468", 
          "https://doi.org/10.1007/bf02723539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.153.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060434430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.153.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060434430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.31.3282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.31.3282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473352"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-07", 
    "datePublishedReg": "1994-07-01", 
    "description": "The high- and low-energy limits of a chain of coupled rotators are integrable and correspond respectively to a set of free rotators and to a chain of harmonic oscillators. For intermediate values of the energy, numerical calculations show the agreement of finite time averages of physical observables with their Gibbsian estimate. The boundaries between the two integrable limits and the statistical domain are analytically computed using the Gibbsian estimates of dynamical observables. For large energies the geometry of nonlinear resonances enables the definition of relevant 1.5-degree-of-freedom approximations of the dynamics. They provide resonance overlap parameters whose Gibbsian probability distribution may be computed. Requiring the support of this distribution to be right above the large-scale stochasticity threshold of the 1.5-degree-of-freedom dynamics yields the boundary at the large-energy limit. At the low-energy limit, the boundary is shown to correspond to the energy where the specific heat departs from that of the corresponding harmonic chain.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02188677", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "76"
      }
    ], 
    "name": "Self-consistent check of the validity of Gibbs calculus using dynamical variables", 
    "pagination": "605-626", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "115a08a77fd1c0bc456f3d29613d89a7692a6493a9a435acabb56bb2838a4237"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02188677"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003642477"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02188677", 
      "https://app.dimensions.ai/details/publication/pub.1003642477"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53981_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02188677"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02188677'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02188677'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02188677'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02188677'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02188677 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N04da9f199cf4404a87cfe0c30348eb16
4 schema:citation sg:pub.10.1007/bf01019687
5 sg:pub.10.1007/bf02188678
6 sg:pub.10.1007/bf02723539
7 https://doi.org/10.1016/0370-1573(85)90019-5
8 https://doi.org/10.1103/physrev.153.250
9 https://doi.org/10.1103/physreva.31.3282
10 schema:datePublished 1994-07
11 schema:datePublishedReg 1994-07-01
12 schema:description The high- and low-energy limits of a chain of coupled rotators are integrable and correspond respectively to a set of free rotators and to a chain of harmonic oscillators. For intermediate values of the energy, numerical calculations show the agreement of finite time averages of physical observables with their Gibbsian estimate. The boundaries between the two integrable limits and the statistical domain are analytically computed using the Gibbsian estimates of dynamical observables. For large energies the geometry of nonlinear resonances enables the definition of relevant 1.5-degree-of-freedom approximations of the dynamics. They provide resonance overlap parameters whose Gibbsian probability distribution may be computed. Requiring the support of this distribution to be right above the large-scale stochasticity threshold of the 1.5-degree-of-freedom dynamics yields the boundary at the large-energy limit. At the low-energy limit, the boundary is shown to correspond to the energy where the specific heat departs from that of the corresponding harmonic chain.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N201baa7e6d6c4cf8beb98396edfad156
17 N9b9c0ecb9b3d4d9aba9213beba8b878f
18 sg:journal.1040979
19 schema:name Self-consistent check of the validity of Gibbs calculus using dynamical variables
20 schema:pagination 605-626
21 schema:productId N4ea02c1be1574e2783c7fc820ee9da4b
22 N8f8f9c07583b48a6a7d0bac116cccb04
23 Nf43ea69aab984f1288526195ff9c5e49
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003642477
25 https://doi.org/10.1007/bf02188677
26 schema:sdDatePublished 2019-04-11T12:11
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N6d711a23a8b74cc7a0e9bcad1058f2af
29 schema:url http://link.springer.com/10.1007%2FBF02188677
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N04da9f199cf4404a87cfe0c30348eb16 rdf:first sg:person.01243642262.71
34 rdf:rest Ndb1f4609b8bd4b1e92d6d29d3bdbe202
35 N201baa7e6d6c4cf8beb98396edfad156 schema:volumeNumber 76
36 rdf:type schema:PublicationVolume
37 N4ea02c1be1574e2783c7fc820ee9da4b schema:name doi
38 schema:value 10.1007/bf02188677
39 rdf:type schema:PropertyValue
40 N611edaff663c4737a8f9920c7cea773e schema:name Fachbereich Physik, Bergische Universität-Gesamthochschule Wuppertal Gauss, Strasse 20, D-42097, Wuppertal 1, Germany
41 rdf:type schema:Organization
42 N6d711a23a8b74cc7a0e9bcad1058f2af schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N8f8f9c07583b48a6a7d0bac116cccb04 schema:name dimensions_id
45 schema:value pub.1003642477
46 rdf:type schema:PropertyValue
47 N9b9c0ecb9b3d4d9aba9213beba8b878f schema:issueNumber 1-2
48 rdf:type schema:PublicationIssue
49 N9ea2605c497f4d46a40784006de6b418 rdf:first sg:person.0772676522.84
50 rdf:rest Na984f604ac64472a939167050c87134f
51 Na984f604ac64472a939167050c87134f rdf:first sg:person.01365701241.87
52 rdf:rest rdf:nil
53 Ndb1f4609b8bd4b1e92d6d29d3bdbe202 rdf:first sg:person.0671621336.20
54 rdf:rest N9ea2605c497f4d46a40784006de6b418
55 Nf43ea69aab984f1288526195ff9c5e49 schema:name readcube_id
56 schema:value 115a08a77fd1c0bc456f3d29613d89a7692a6493a9a435acabb56bb2838a4237
57 rdf:type schema:PropertyValue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1040979 schema:issn 0022-4715
65 1572-9613
66 schema:name Journal of Statistical Physics
67 rdf:type schema:Periodical
68 sg:person.01243642262.71 schema:affiliation https://www.grid.ac/institutes/grid.5399.6
69 schema:familyName Escande
70 schema:givenName Dominique
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243642262.71
72 rdf:type schema:Person
73 sg:person.01365701241.87 schema:affiliation https://www.grid.ac/institutes/grid.8404.8
74 schema:familyName Ruffo
75 schema:givenName Stefano
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365701241.87
77 rdf:type schema:Person
78 sg:person.0671621336.20 schema:affiliation N611edaff663c4737a8f9920c7cea773e
79 schema:familyName Kantz
80 schema:givenName Holger
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671621336.20
82 rdf:type schema:Person
83 sg:person.0772676522.84 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
84 schema:familyName Livi
85 schema:givenName Roberto
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772676522.84
87 rdf:type schema:Person
88 sg:pub.10.1007/bf01019687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012658600
89 https://doi.org/10.1007/bf01019687
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf02188678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007649376
92 https://doi.org/10.1007/bf02188678
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf02723539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030151468
95 https://doi.org/10.1007/bf02723539
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0370-1573(85)90019-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012541626
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrev.153.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060434430
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physreva.31.3282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060473352
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.5399.6 schema:alternateName Aix-Marseille University
104 schema:name DRFC, Centre d'Etudes de Cadarache, 13108, Saint Paul lez Durance Cedex, France
105 Equipe Turbulence Plasma de l'URA 773, CNRS, Université de Provence, Institut Mediterranéen de Technologie, Château-Gombert, F-13451, Marseille, France
106 rdf:type schema:Organization
107 https://www.grid.ac/institutes/grid.6292.f schema:alternateName University of Bologna
108 schema:name Dipartimento di Fisica, Università di Bologna, and INFN and INFM, 2, I-40126, Bologna, Italy
109 rdf:type schema:Organization
110 https://www.grid.ac/institutes/grid.8404.8 schema:alternateName University of Florence
111 schema:name Dipartimento di Energetica, Università di Firenze, I-50123, Firenze
112 INFN and INFM, Sezione di Firenze, Italy
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...