Fluctuations in mean-field self-organized criticality View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-02

AUTHORS

B. Gaveau, L. S. Schulman

ABSTRACT

We present two models that exhibit self-organized criticality at the mean-field level. These can be variously interpreted in epidemiological or chemical reaction terms. By studying the master equation for these models we find, however, that only in one of them does the self-organized critical behavior survive in the face of fluctuations. For this model we show the spectrum of the evolution operator to have spectral collapse, i.e., instead of a gap, as would occur in noncritical behavior, there are eigenvalues that approach zero as an inverse power of system size. More... »

PAGES

607-630

References to SciGraph publications

  • 1991-07. Infinite-range mean-field percolation: Transfer matrix study of longitudinal correlation length in JOURNAL OF STATISTICAL PHYSICS
  • 1988-06. Mean field theory of self-organized critical phenomena in JOURNAL OF STATISTICAL PHYSICS
  • 1993-02. Finite-size scaling for mean-field percolation in JOURNAL OF STATISTICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02188573

    DOI

    http://dx.doi.org/10.1007/bf02188573

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1049612086


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sorbonne University", 
              "id": "https://www.grid.ac/institutes/grid.462844.8", 
              "name": [
                "Math\u00e9matiques, Universit\u00e9 P. M. Curie, 75252, Paris Cedex 05, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gaveau", 
            "givenName": "B.", 
            "id": "sg:person.011754127724.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754127724.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Clarkson University", 
              "id": "https://www.grid.ac/institutes/grid.254280.9", 
              "name": [
                "Physics Department, Clarkson University, 13699-5820, Potsdam, New York"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schulman", 
            "givenName": "L. S.", 
            "id": "sg:person.010275521604.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275521604.97"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01057874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024095822", 
              "https://doi.org/10.1007/bf01057874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01053587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025966421", 
              "https://doi.org/10.1007/bf01053587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01014884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042741170", 
              "https://doi.org/10.1007/bf01014884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/24/9/005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059072150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.65.1395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060801161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.65.1395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060801161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.233.4762.425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062532798"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-02", 
        "datePublishedReg": "1994-02-01", 
        "description": "We present two models that exhibit self-organized criticality at the mean-field level. These can be variously interpreted in epidemiological or chemical reaction terms. By studying the master equation for these models we find, however, that only in one of them does the self-organized critical behavior survive in the face of fluctuations. For this model we show the spectrum of the evolution operator to have spectral collapse, i.e., instead of a gap, as would occur in noncritical behavior, there are eigenvalues that approach zero as an inverse power of system size.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02188573", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "74"
          }
        ], 
        "name": "Fluctuations in mean-field self-organized criticality", 
        "pagination": "607-630", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ec56901d1be5f3b8afec26bc0e28145714ab59e064d88bf9e8f8fc1bf4c9aed0"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02188573"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1049612086"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02188573", 
          "https://app.dimensions.ai/details/publication/pub.1049612086"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54003_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02188573"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02188573'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02188573'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02188573'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02188573'


     

    This table displays all metadata directly associated to this object as RDF triples.

    92 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02188573 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3a30f2fe5f6d4343ab99912d0df8c425
    4 schema:citation sg:pub.10.1007/bf01014884
    5 sg:pub.10.1007/bf01053587
    6 sg:pub.10.1007/bf01057874
    7 https://doi.org/10.1088/0305-4470/24/9/005
    8 https://doi.org/10.1103/physrevlett.65.1395
    9 https://doi.org/10.1126/science.233.4762.425
    10 schema:datePublished 1994-02
    11 schema:datePublishedReg 1994-02-01
    12 schema:description We present two models that exhibit self-organized criticality at the mean-field level. These can be variously interpreted in epidemiological or chemical reaction terms. By studying the master equation for these models we find, however, that only in one of them does the self-organized critical behavior survive in the face of fluctuations. For this model we show the spectrum of the evolution operator to have spectral collapse, i.e., instead of a gap, as would occur in noncritical behavior, there are eigenvalues that approach zero as an inverse power of system size.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N06a1b6cd7f534174b2401cf42123f51b
    17 N4aa456c0e5764b46aa00e9bf2143b966
    18 sg:journal.1040979
    19 schema:name Fluctuations in mean-field self-organized criticality
    20 schema:pagination 607-630
    21 schema:productId N27c119e771824687b382c28fe5c23868
    22 N90617158862143238b668615d3311f8a
    23 Ne3419d433dad4a37ad44a85d0e47ebac
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049612086
    25 https://doi.org/10.1007/bf02188573
    26 schema:sdDatePublished 2019-04-11T12:14
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher Na572a0a079b64f0abc3b03dbcee92019
    29 schema:url http://link.springer.com/10.1007%2FBF02188573
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N06a1b6cd7f534174b2401cf42123f51b schema:issueNumber 3-4
    34 rdf:type schema:PublicationIssue
    35 N27c119e771824687b382c28fe5c23868 schema:name dimensions_id
    36 schema:value pub.1049612086
    37 rdf:type schema:PropertyValue
    38 N3a30f2fe5f6d4343ab99912d0df8c425 rdf:first sg:person.011754127724.08
    39 rdf:rest N934a3cfa423643fc9d624277ad3be709
    40 N4aa456c0e5764b46aa00e9bf2143b966 schema:volumeNumber 74
    41 rdf:type schema:PublicationVolume
    42 N90617158862143238b668615d3311f8a schema:name readcube_id
    43 schema:value ec56901d1be5f3b8afec26bc0e28145714ab59e064d88bf9e8f8fc1bf4c9aed0
    44 rdf:type schema:PropertyValue
    45 N934a3cfa423643fc9d624277ad3be709 rdf:first sg:person.010275521604.97
    46 rdf:rest rdf:nil
    47 Na572a0a079b64f0abc3b03dbcee92019 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 Ne3419d433dad4a37ad44a85d0e47ebac schema:name doi
    50 schema:value 10.1007/bf02188573
    51 rdf:type schema:PropertyValue
    52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Mathematical Sciences
    54 rdf:type schema:DefinedTerm
    55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Pure Mathematics
    57 rdf:type schema:DefinedTerm
    58 sg:journal.1040979 schema:issn 0022-4715
    59 1572-9613
    60 schema:name Journal of Statistical Physics
    61 rdf:type schema:Periodical
    62 sg:person.010275521604.97 schema:affiliation https://www.grid.ac/institutes/grid.254280.9
    63 schema:familyName Schulman
    64 schema:givenName L. S.
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275521604.97
    66 rdf:type schema:Person
    67 sg:person.011754127724.08 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
    68 schema:familyName Gaveau
    69 schema:givenName B.
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754127724.08
    71 rdf:type schema:Person
    72 sg:pub.10.1007/bf01014884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042741170
    73 https://doi.org/10.1007/bf01014884
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1007/bf01053587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025966421
    76 https://doi.org/10.1007/bf01053587
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/bf01057874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024095822
    79 https://doi.org/10.1007/bf01057874
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1088/0305-4470/24/9/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059072150
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1103/physrevlett.65.1395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801161
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1126/science.233.4762.425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062532798
    86 rdf:type schema:CreativeWork
    87 https://www.grid.ac/institutes/grid.254280.9 schema:alternateName Clarkson University
    88 schema:name Physics Department, Clarkson University, 13699-5820, Potsdam, New York
    89 rdf:type schema:Organization
    90 https://www.grid.ac/institutes/grid.462844.8 schema:alternateName Sorbonne University
    91 schema:name Mathématiques, Université P. M. Curie, 75252, Paris Cedex 05, France
    92 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...