Ontology type: schema:ScholarlyArticle
1994-03
AUTHORSGiancarlo Benettin, Antonio Giorgilli
ABSTRACTWe reconsider the problem of the Hamiltonian interpolation of symplectic mappings. Following Moser's scheme, we prove that for any mapping ψε, analytic and ε-close to the identity, there exists an analytic autonomous Hamiltonian system, Hε such that its time-one mapping ΦHε differs from ψε by a quantity exponentially small in 1/ε. This result is applied, in particular, to the problem of numerical integration of Hamiltonian systems by symplectic algorithms; it turns out that, when using an analytic symplectic algorithm of orders to integrate a Hamiltonian systemK, one actually follows “exactly,” namely within the computer roundoff error, the trajectories of the interpolating Hamiltonian Hε, or equivalently of the rescaled Hamiltonian Kε=ε-1Hε, which differs fromK, but turns out to be ε5 close to it. Special attention is devoted to numerical integration for scattering problems. More... »
PAGES1117-1143
http://scigraph.springernature.com/pub.10.1007/bf02188219
DOIhttp://dx.doi.org/10.1007/bf02188219
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1045098794
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Padua",
"id": "https://www.grid.ac/institutes/grid.5608.b",
"name": [
"Dipartimento di Matematica Pura e Applicata, GNFM (CNR) and INFM, Universit\u00e0 di Padova, 35131, Padova, Italy"
],
"type": "Organization"
},
"familyName": "Benettin",
"givenName": "Giancarlo",
"id": "sg:person.014313317357.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313317357.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Milan",
"id": "https://www.grid.ac/institutes/grid.4708.b",
"name": [
"Dipartimento di Matematica and GNFM (CNR), Universit\u00e0 di Milano, 20133, Milano, Italy"
],
"type": "Organization"
},
"familyName": "Giorgilli",
"givenName": "Antonio",
"id": "sg:person.010532704656.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01230455",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013280863",
"https://doi.org/10.1007/bf01230455"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01230455",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013280863",
"https://doi.org/10.1007/bf01230455"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01230629",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028918192",
"https://doi.org/10.1007/bf01230629"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01230629",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028918192",
"https://doi.org/10.1007/bf01230629"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01020866",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031436948",
"https://doi.org/10.1007/bf01020866"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01029209",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037827959",
"https://doi.org/10.1007/bf01029209"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01221399",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043232970",
"https://doi.org/10.1007/bf01221399"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01221399",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043232970",
"https://doi.org/10.1007/bf01221399"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00945838",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044257609",
"https://doi.org/10.1007/bf00945838"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0375-9601(91)90368-i",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045019985"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0375-9601(91)90368-i",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045019985"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01229124",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050175292",
"https://doi.org/10.1007/bf01229124"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01229124",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050175292",
"https://doi.org/10.1007/bf01229124"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01218157",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051921197",
"https://doi.org/10.1007/bf01218157"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01218157",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051921197",
"https://doi.org/10.1007/bf01218157"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01052756",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052527773",
"https://doi.org/10.1007/bf01052756"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0951-7715/3/2/001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059110625"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0951-7715/5/2/011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059110747"
],
"type": "CreativeWork"
}
],
"datePublished": "1994-03",
"datePublishedReg": "1994-03-01",
"description": "We reconsider the problem of the Hamiltonian interpolation of symplectic mappings. Following Moser's scheme, we prove that for any mapping \u03c8\u03b5, analytic and \u03b5-close to the identity, there exists an analytic autonomous Hamiltonian system, H\u03b5 such that its time-one mapping \u03a6H\u03b5 differs from \u03c8\u03b5 by a quantity exponentially small in 1/\u03b5. This result is applied, in particular, to the problem of numerical integration of Hamiltonian systems by symplectic algorithms; it turns out that, when using an analytic symplectic algorithm of orders to integrate a Hamiltonian systemK, one actually follows \u201cexactly,\u201d namely within the computer roundoff error, the trajectories of the interpolating Hamiltonian H\u03b5, or equivalently of the rescaled Hamiltonian K\u03b5=\u03b5-1H\u03b5, which differs fromK, but turns out to be \u03b55 close to it. Special attention is devoted to numerical integration for scattering problems.",
"genre": "research_article",
"id": "sg:pub.10.1007/bf02188219",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1040979",
"issn": [
"0022-4715",
"1572-9613"
],
"name": "Journal of Statistical Physics",
"type": "Periodical"
},
{
"issueNumber": "5-6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "74"
}
],
"name": "On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms",
"pagination": "1117-1143",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"d6d1e0d41ea2e2b9d25028dc205183f8558813ce19e976a4b45df3db7f39b5f7"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf02188219"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1045098794"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf02188219",
"https://app.dimensions.ai/details/publication/pub.1045098794"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:16",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54017_00000001.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2FBF02188219"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02188219'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02188219'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02188219'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02188219'
This table displays all metadata directly associated to this object as RDF triples.
116 TRIPLES
21 PREDICATES
39 URIs
19 LITERALS
7 BLANK NODES