Orthogonal packings inPG(5, 2) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-12

AUTHORS

D. R. Stinson, S. A. Vanstone

ABSTRACT

Aspread inPG(n, q) is a set of lines which partitions the point set. A packing inPG(n, q) (n odd) is a partition of the lines into spreads. Two packings ofPG(n, q) are calledorthogonal if and only if any two spreads, one from each packing, have at most one line in common. Recently, R. D. Baker has shown the existence of a pair of orthogonal packings inPG(5, 2). In this paper we enumerate all packings inPG(5, 2) having both an automorphism of order 31 and the Frobenius automorphism. We find all pairs of orthogonal packings of the above type and display a set of six mutually orthogonal packings. Previously the largest set of orthogonal packings known inPG(5, 2) was two. More... »

PAGES

159-168

References to SciGraph publications

  • 1981-12. Recursive constructions for skew resolutions in affine geometries in AEQUATIONES MATHEMATICAE
  • 1974-05. On parallelisms in finite projective spaces in GEOMETRIAE DEDICATA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02188184

    DOI

    http://dx.doi.org/10.1007/bf02188184

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028429427


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Combinatorics and Optimization, University of Waterloo, St. Jerome's College, N2L 3G1, Waterloo, Ont., Canada", 
              "id": "http://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Computer Science, University of Manitoba, R3T 2N2, Winnipeg, Man., Canada", 
                "Department of Combinatorics and Optimization, University of Waterloo, St. Jerome's College, N2L 3G1, Waterloo, Ont., Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stinson", 
            "givenName": "D. R.", 
            "id": "sg:person.014151373147.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151373147.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Combinatorics and Optimization, University of Waterloo, St. Jerome's College, N2L 3G1, Waterloo, Ont., Canada", 
              "id": "http://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Computer Science, University of Manitoba, R3T 2N2, Winnipeg, Man., Canada", 
                "Department of Combinatorics and Optimization, University of Waterloo, St. Jerome's College, N2L 3G1, Waterloo, Ont., Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vanstone", 
            "givenName": "S. A.", 
            "id": "sg:person.010344544767.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02188038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005070175", 
              "https://doi.org/10.1007/bf02188038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00181359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032372812", 
              "https://doi.org/10.1007/bf00181359"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1986-12", 
        "datePublishedReg": "1986-12-01", 
        "description": "Aspread inPG(n, q) is a set of lines which partitions the point set. A packing inPG(n, q) (n odd) is a partition of the lines into spreads. Two packings ofPG(n, q) are calledorthogonal if and only if any two spreads, one from each packing, have at most one line in common. Recently, R. D. Baker has shown the existence of a pair of orthogonal packings inPG(5, 2). In this paper we enumerate all packings inPG(5, 2) having both an automorphism of order 31 and the Frobenius automorphism. We find all pairs of orthogonal packings of the above type and display a set of six mutually orthogonal packings. Previously the largest set of orthogonal packings known inPG(5, 2) was two.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02188184", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136868", 
            "issn": [
              "0001-9054", 
              "1420-8903"
            ], 
            "name": "Aequationes mathematicae", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "keywords": [
          "spread", 
          "lines", 
          "D. Baker", 
          "types", 
          "point", 
          "pairs", 
          "Baker", 
          "above type", 
          "set", 
          "existence", 
          "packing", 
          "large set", 
          "partition", 
          "paper", 
          "Frobenius automorphism", 
          "automorphisms", 
          "set of lines", 
          "orthogonal packing", 
          "order 31"
        ], 
        "name": "Orthogonal packings inPG(5, 2)", 
        "pagination": "159-168", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028429427"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02188184"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02188184", 
          "https://app.dimensions.ai/details/publication/pub.1028429427"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_205.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02188184"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02188184'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02188184'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02188184'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02188184'


     

    This table displays all metadata directly associated to this object as RDF triples.

    92 TRIPLES      21 PREDICATES      46 URIs      36 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02188184 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nf5e75da9303f48e7b9a9a408bd90d56a
    4 schema:citation sg:pub.10.1007/bf00181359
    5 sg:pub.10.1007/bf02188038
    6 schema:datePublished 1986-12
    7 schema:datePublishedReg 1986-12-01
    8 schema:description Aspread inPG(n, q) is a set of lines which partitions the point set. A packing inPG(n, q) (n odd) is a partition of the lines into spreads. Two packings ofPG(n, q) are calledorthogonal if and only if any two spreads, one from each packing, have at most one line in common. Recently, R. D. Baker has shown the existence of a pair of orthogonal packings inPG(5, 2). In this paper we enumerate all packings inPG(5, 2) having both an automorphism of order 31 and the Frobenius automorphism. We find all pairs of orthogonal packings of the above type and display a set of six mutually orthogonal packings. Previously the largest set of orthogonal packings known inPG(5, 2) was two.
    9 schema:genre article
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N3ce4a7c4e7164f4cb0c14a5107da11bc
    12 N3de4ac0669754d2cb9c79e4ee0a38a9d
    13 sg:journal.1136868
    14 schema:keywords Baker
    15 D. Baker
    16 Frobenius automorphism
    17 above type
    18 automorphisms
    19 existence
    20 large set
    21 lines
    22 order 31
    23 orthogonal packing
    24 packing
    25 pairs
    26 paper
    27 partition
    28 point
    29 set
    30 set of lines
    31 spread
    32 types
    33 schema:name Orthogonal packings inPG(5, 2)
    34 schema:pagination 159-168
    35 schema:productId N06583280276d4f5b8324b0e40c0c61a0
    36 N9a5e6f3c4c424cda8fa917a2cac93ced
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028429427
    38 https://doi.org/10.1007/bf02188184
    39 schema:sdDatePublished 2022-09-02T15:46
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N466c7ce4cbff4828aa130c7a4797f43a
    42 schema:url https://doi.org/10.1007/bf02188184
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N06583280276d4f5b8324b0e40c0c61a0 schema:name dimensions_id
    47 schema:value pub.1028429427
    48 rdf:type schema:PropertyValue
    49 N3ce4a7c4e7164f4cb0c14a5107da11bc schema:volumeNumber 31
    50 rdf:type schema:PublicationVolume
    51 N3de4ac0669754d2cb9c79e4ee0a38a9d schema:issueNumber 1
    52 rdf:type schema:PublicationIssue
    53 N466c7ce4cbff4828aa130c7a4797f43a schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 N9a5e6f3c4c424cda8fa917a2cac93ced schema:name doi
    56 schema:value 10.1007/bf02188184
    57 rdf:type schema:PropertyValue
    58 Nf5e75da9303f48e7b9a9a408bd90d56a rdf:first sg:person.014151373147.58
    59 rdf:rest Nfbf27b01b45b4d35b00fc814847a7da8
    60 Nfbf27b01b45b4d35b00fc814847a7da8 rdf:first sg:person.010344544767.07
    61 rdf:rest rdf:nil
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Pure Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1136868 schema:issn 0001-9054
    69 1420-8903
    70 schema:name Aequationes mathematicae
    71 schema:publisher Springer Nature
    72 rdf:type schema:Periodical
    73 sg:person.010344544767.07 schema:affiliation grid-institutes:grid.46078.3d
    74 schema:familyName Vanstone
    75 schema:givenName S. A.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07
    77 rdf:type schema:Person
    78 sg:person.014151373147.58 schema:affiliation grid-institutes:grid.46078.3d
    79 schema:familyName Stinson
    80 schema:givenName D. R.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151373147.58
    82 rdf:type schema:Person
    83 sg:pub.10.1007/bf00181359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032372812
    84 https://doi.org/10.1007/bf00181359
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/bf02188038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005070175
    87 https://doi.org/10.1007/bf02188038
    88 rdf:type schema:CreativeWork
    89 grid-institutes:grid.46078.3d schema:alternateName Department of Combinatorics and Optimization, University of Waterloo, St. Jerome's College, N2L 3G1, Waterloo, Ont., Canada
    90 schema:name Department of Combinatorics and Optimization, University of Waterloo, St. Jerome's College, N2L 3G1, Waterloo, Ont., Canada
    91 Department of Computer Science, University of Manitoba, R3T 2N2, Winnipeg, Man., Canada
    92 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...