Chaotic cascades with Kolmogorov 1941 scaling View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1994-06

AUTHORS

L. Biferale, M. Blank, U. Frisch

ABSTRACT

We define a (chaotic) deterministic variant of random multiplicative cascade models of turbulence. It preserves the hierarchical tree structure, thanks to the addition of infinitesimal noise. The zero-noise limit can be handled by Perron-Frobenius theory, just like the zero-diffusivity limit for the fast dynamo problem. Random multiplicative models do not possess Kolmogorov 1941 (K41) scaling because of a large-deviations effect. Our numerical studies indicate thatdeterministic multiplicative models can be chaotic and still have exact K41 scaling. A mechanism is suggested for avoiding large deviations, which is present in maps with a neutrally unstable fixed point. More... »

PAGES

781-795

References to SciGraph publications

  • 1992-07. Large deviations for multiplicative chaos in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Journal

    TITLE

    Journal of Statistical Physics

    ISSUE

    5-6

    VOLUME

    75

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02186743

    DOI

    http://dx.doi.org/10.1007/bf02186743

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018298716


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "CNRS URA 1362, Observatoire de Nice, BP 229, 06304, Nice Cedex 4, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Biferale", 
            "givenName": "L.", 
            "id": "sg:person.01314177461.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314177461.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "CNRS URA 1362, Observatoire de Nice, BP 229, 06304, Nice Cedex 4, France", 
                "Institute for Information Transmission Problems, Russian Academy of Sciences, 101447, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blank", 
            "givenName": "M.", 
            "id": "sg:person.016626051205.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016626051205.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "CNRS URA 1362, Observatoire de Nice, BP 229, 06304, Nice Cedex 4, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frisch", 
            "givenName": "U.", 
            "id": "sg:person.011615073661.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0920-5632(87)90008-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001709105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0920-5632(87)90008-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001709105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.85.13.4591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012250285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02096590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012824167", 
              "https://doi.org/10.1007/bf02096590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02096590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012824167", 
              "https://doi.org/10.1007/bf02096590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112091001957", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023353374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03091929308203617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031228474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1991.0081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034526358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112074000711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047366412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112074000711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047366412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112092001782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053754260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112084000513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053847990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112062000506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053965382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112091001830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054068489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.165846", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057736406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.858766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058111971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/17/18/021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059067122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.43.798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060483603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.43.798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060483603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jpsj.56.4210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063110072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/ptps.99.165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063145587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9781611970241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098556617"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-06", 
        "datePublishedReg": "1994-06-01", 
        "description": "We define a (chaotic) deterministic variant of random multiplicative cascade models of turbulence. It preserves the hierarchical tree structure, thanks to the addition of infinitesimal noise. The zero-noise limit can be handled by Perron-Frobenius theory, just like the zero-diffusivity limit for the fast dynamo problem. Random multiplicative models do not possess Kolmogorov 1941 (K41) scaling because of a large-deviations effect. Our numerical studies indicate thatdeterministic multiplicative models can be chaotic and still have exact K41 scaling. A mechanism is suggested for avoiding large deviations, which is present in maps with a neutrally unstable fixed point.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02186743", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5-6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "75"
          }
        ], 
        "name": "Chaotic cascades with Kolmogorov 1941 scaling", 
        "pagination": "781-795", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "572fe0646a849ad1a0477e851aa79d7f8fe0c38123fb210164ee919daf2298f9"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02186743"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018298716"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02186743", 
          "https://app.dimensions.ai/details/publication/pub.1018298716"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71680_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02186743"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02186743'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02186743'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02186743'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02186743'


     

    This table displays all metadata directly associated to this object as RDF triples.

    135 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02186743 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Nfaaf605c637942909582b9dc2063b3d5
    4 schema:citation sg:pub.10.1007/bf02096590
    5 https://doi.org/10.1016/0920-5632(87)90008-9
    6 https://doi.org/10.1017/s0022112062000506
    7 https://doi.org/10.1017/s0022112074000711
    8 https://doi.org/10.1017/s0022112084000513
    9 https://doi.org/10.1017/s0022112091001830
    10 https://doi.org/10.1017/s0022112091001957
    11 https://doi.org/10.1017/s0022112092001782
    12 https://doi.org/10.1063/1.165846
    13 https://doi.org/10.1063/1.858766
    14 https://doi.org/10.1073/pnas.85.13.4591
    15 https://doi.org/10.1080/03091929308203617
    16 https://doi.org/10.1088/0305-4470/17/18/021
    17 https://doi.org/10.1098/rspa.1991.0081
    18 https://doi.org/10.1103/physreva.43.798
    19 https://doi.org/10.1137/1.9781611970241
    20 https://doi.org/10.1143/jpsj.56.4210
    21 https://doi.org/10.1143/ptps.99.165
    22 schema:datePublished 1994-06
    23 schema:datePublishedReg 1994-06-01
    24 schema:description We define a (chaotic) deterministic variant of random multiplicative cascade models of turbulence. It preserves the hierarchical tree structure, thanks to the addition of infinitesimal noise. The zero-noise limit can be handled by Perron-Frobenius theory, just like the zero-diffusivity limit for the fast dynamo problem. Random multiplicative models do not possess Kolmogorov 1941 (K41) scaling because of a large-deviations effect. Our numerical studies indicate thatdeterministic multiplicative models can be chaotic and still have exact K41 scaling. A mechanism is suggested for avoiding large deviations, which is present in maps with a neutrally unstable fixed point.
    25 schema:genre research_article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree true
    28 schema:isPartOf N36790cbbb58b48d4b981ed278b4d1669
    29 Ne909406f131f4779b54c2559ccb5ba53
    30 sg:journal.1040979
    31 schema:name Chaotic cascades with Kolmogorov 1941 scaling
    32 schema:pagination 781-795
    33 schema:productId N08a89c4c93aa4f178e3f519db13af12f
    34 N96bffa2d8e5742c495d5e05a6a2cf270
    35 Nccbea1e88e084cf49d0d961754cc53b4
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018298716
    37 https://doi.org/10.1007/bf02186743
    38 schema:sdDatePublished 2019-04-11T12:57
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher N1c0dde797e66403bba26796a9c4e7a3d
    41 schema:url http://link.springer.com/10.1007%2FBF02186743
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N053ce6e21bd74f448c3d246032f349bf rdf:first sg:person.016626051205.94
    46 rdf:rest N480052dfe0fb45dab42d01dd17ebb525
    47 N08a89c4c93aa4f178e3f519db13af12f schema:name readcube_id
    48 schema:value 572fe0646a849ad1a0477e851aa79d7f8fe0c38123fb210164ee919daf2298f9
    49 rdf:type schema:PropertyValue
    50 N1c0dde797e66403bba26796a9c4e7a3d schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N36790cbbb58b48d4b981ed278b4d1669 schema:issueNumber 5-6
    53 rdf:type schema:PublicationIssue
    54 N480052dfe0fb45dab42d01dd17ebb525 rdf:first sg:person.011615073661.47
    55 rdf:rest rdf:nil
    56 N535df4596f4f41bfa42fe8480ffe0d08 schema:name CNRS URA 1362, Observatoire de Nice, BP 229, 06304, Nice Cedex 4, France
    57 rdf:type schema:Organization
    58 N60ac714436e042069228c6db50885ad2 schema:name CNRS URA 1362, Observatoire de Nice, BP 229, 06304, Nice Cedex 4, France
    59 rdf:type schema:Organization
    60 N96bffa2d8e5742c495d5e05a6a2cf270 schema:name dimensions_id
    61 schema:value pub.1018298716
    62 rdf:type schema:PropertyValue
    63 Nccbea1e88e084cf49d0d961754cc53b4 schema:name doi
    64 schema:value 10.1007/bf02186743
    65 rdf:type schema:PropertyValue
    66 Ne909406f131f4779b54c2559ccb5ba53 schema:volumeNumber 75
    67 rdf:type schema:PublicationVolume
    68 Nfaaf605c637942909582b9dc2063b3d5 rdf:first sg:person.01314177461.20
    69 rdf:rest N053ce6e21bd74f448c3d246032f349bf
    70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Mathematical Sciences
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Statistics
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1040979 schema:issn 0022-4715
    77 1572-9613
    78 schema:name Journal of Statistical Physics
    79 rdf:type schema:Periodical
    80 sg:person.011615073661.47 schema:affiliation N535df4596f4f41bfa42fe8480ffe0d08
    81 schema:familyName Frisch
    82 schema:givenName U.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47
    84 rdf:type schema:Person
    85 sg:person.01314177461.20 schema:affiliation N60ac714436e042069228c6db50885ad2
    86 schema:familyName Biferale
    87 schema:givenName L.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314177461.20
    89 rdf:type schema:Person
    90 sg:person.016626051205.94 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    91 schema:familyName Blank
    92 schema:givenName M.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016626051205.94
    94 rdf:type schema:Person
    95 sg:pub.10.1007/bf02096590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012824167
    96 https://doi.org/10.1007/bf02096590
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1016/0920-5632(87)90008-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001709105
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1017/s0022112062000506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053965382
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1017/s0022112074000711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047366412
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1017/s0022112084000513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053847990
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1017/s0022112091001830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054068489
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1017/s0022112091001957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023353374
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1017/s0022112092001782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053754260
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1063/1.165846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057736406
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1063/1.858766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058111971
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1073/pnas.85.13.4591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012250285
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1080/03091929308203617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031228474
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1088/0305-4470/17/18/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059067122
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1098/rspa.1991.0081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034526358
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1103/physreva.43.798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060483603
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1137/1.9781611970241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556617
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1143/jpsj.56.4210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063110072
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1143/ptps.99.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063145587
    131 rdf:type schema:CreativeWork
    132 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    133 schema:name CNRS URA 1362, Observatoire de Nice, BP 229, 06304, Nice Cedex 4, France
    134 Institute for Information Transmission Problems, Russian Academy of Sciences, 101447, Moscow, Russia
    135 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...