Numerical and analytical studies of nonequilibrium fluctuation-induced transport processes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-05

AUTHORS

T. C. Elston, Charles R. Doering

ABSTRACT

We present a numerical simulation algorithm that is well suited for the study of noise-induced transport processes. The algorithm has two advantages over standard techniques: (1) it preserves the property of detailed balance for systems in equilibrium and (2) it provides an efficient method for calculating nonequilibrium currents. Numerical results are compared with exact solutions from two different types of correlation ratchets, and are used to verify the results of perturbation calculations done on a three-state ratchet. More... »

PAGES

359-383

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02183737

DOI

http://dx.doi.org/10.1007/bf02183737

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012038724


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Center for Nonlinear Studies, Los Alamos National Laboratory, MS-B258, 87545, Los Alamos, New Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elston", 
        "givenName": "T. C.", 
        "id": "sg:person.013246600277.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013246600277.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Center for Nonlinear Studies, Los Alamos National Laboratory, MS-B258, 87545, Los Alamos, New Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doering", 
        "givenName": "Charles R.", 
        "id": "sg:person.01161117310.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0375-9601(94)90989-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002322087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(94)90989-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002322087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02451826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003522786", 
          "https://doi.org/10.1007/bf02451826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02451826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003522786", 
          "https://doi.org/10.1007/bf02451826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.91.25.11782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004100012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/365203a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009958302", 
          "https://doi.org/10.1038/365203a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(94)90060-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019352815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/370412a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023660536", 
          "https://doi.org/10.1038/370412a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(95)00920-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036519501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/369181a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038973404", 
          "https://doi.org/10.1038/369181a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/368287a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044669935", 
          "https://doi.org/10.1038/368287a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/370446a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053083014", 
          "https://doi.org/10.1038/370446a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.1766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.1766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/28/7/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064230171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082507322", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-05", 
    "datePublishedReg": "1996-05-01", 
    "description": "We present a numerical simulation algorithm that is well suited for the study of noise-induced transport processes. The algorithm has two advantages over standard techniques: (1) it preserves the property of detailed balance for systems in equilibrium and (2) it provides an efficient method for calculating nonequilibrium currents. Numerical results are compared with exact solutions from two different types of correlation ratchets, and are used to verify the results of perturbation calculations done on a three-state ratchet.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02183737", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "83"
      }
    ], 
    "name": "Numerical and analytical studies of nonequilibrium fluctuation-induced transport processes", 
    "pagination": "359-383", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "395bcb132cf005abb89ff29a99666fd8f57c43f4ca71121429ec606dc5039142"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02183737"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012038724"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02183737", 
      "https://app.dimensions.ai/details/publication/pub.1012038724"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54002_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02183737"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02183737'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02183737'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02183737'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02183737'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02183737 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nbd970e5e93654d37ad814df252a446e1
4 schema:citation sg:pub.10.1007/bf02451826
5 sg:pub.10.1038/365203a0
6 sg:pub.10.1038/368287a0
7 sg:pub.10.1038/369181a0
8 sg:pub.10.1038/370412a0
9 sg:pub.10.1038/370446a0
10 https://app.dimensions.ai/details/publication/pub.1082507322
11 https://doi.org/10.1016/0092-8674(94)90060-4
12 https://doi.org/10.1016/0375-9601(94)90989-x
13 https://doi.org/10.1016/0375-9601(95)00920-5
14 https://doi.org/10.1073/pnas.91.25.11782
15 https://doi.org/10.1103/physrevlett.71.1477
16 https://doi.org/10.1103/physrevlett.72.1766
17 https://doi.org/10.1103/physrevlett.72.2652
18 https://doi.org/10.1103/physrevlett.72.2984
19 https://doi.org/10.1209/0295-5075/28/7/001
20 schema:datePublished 1996-05
21 schema:datePublishedReg 1996-05-01
22 schema:description We present a numerical simulation algorithm that is well suited for the study of noise-induced transport processes. The algorithm has two advantages over standard techniques: (1) it preserves the property of detailed balance for systems in equilibrium and (2) it provides an efficient method for calculating nonequilibrium currents. Numerical results are compared with exact solutions from two different types of correlation ratchets, and are used to verify the results of perturbation calculations done on a three-state ratchet.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N0a2d423c93034b8e9d2b2ee1b8486978
27 Nbf52f1c05b954d06bc3b3b2b377b3b92
28 sg:journal.1040979
29 schema:name Numerical and analytical studies of nonequilibrium fluctuation-induced transport processes
30 schema:pagination 359-383
31 schema:productId N362583479644498f85fc24b377b341a6
32 N91c16743121e46a5b7ce81b210222c83
33 Nd8a5b45d94914729b8c6110d6fac0709
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012038724
35 https://doi.org/10.1007/bf02183737
36 schema:sdDatePublished 2019-04-11T12:13
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Na8f851eb5e6d4d27ab21cf7c3b1da3aa
39 schema:url http://link.springer.com/10.1007%2FBF02183737
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N0a2d423c93034b8e9d2b2ee1b8486978 schema:volumeNumber 83
44 rdf:type schema:PublicationVolume
45 N362583479644498f85fc24b377b341a6 schema:name doi
46 schema:value 10.1007/bf02183737
47 rdf:type schema:PropertyValue
48 N4c79f91022ac4f6684a6c41d0167c450 rdf:first sg:person.01161117310.79
49 rdf:rest rdf:nil
50 N91c16743121e46a5b7ce81b210222c83 schema:name readcube_id
51 schema:value 395bcb132cf005abb89ff29a99666fd8f57c43f4ca71121429ec606dc5039142
52 rdf:type schema:PropertyValue
53 Na8f851eb5e6d4d27ab21cf7c3b1da3aa schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nbd970e5e93654d37ad814df252a446e1 rdf:first sg:person.013246600277.50
56 rdf:rest N4c79f91022ac4f6684a6c41d0167c450
57 Nbf52f1c05b954d06bc3b3b2b377b3b92 schema:issueNumber 3-4
58 rdf:type schema:PublicationIssue
59 Nd8a5b45d94914729b8c6110d6fac0709 schema:name dimensions_id
60 schema:value pub.1012038724
61 rdf:type schema:PropertyValue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
66 schema:name Numerical and Computational Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1040979 schema:issn 0022-4715
69 1572-9613
70 schema:name Journal of Statistical Physics
71 rdf:type schema:Periodical
72 sg:person.01161117310.79 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
73 schema:familyName Doering
74 schema:givenName Charles R.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79
76 rdf:type schema:Person
77 sg:person.013246600277.50 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
78 schema:familyName Elston
79 schema:givenName T. C.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013246600277.50
81 rdf:type schema:Person
82 sg:pub.10.1007/bf02451826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003522786
83 https://doi.org/10.1007/bf02451826
84 rdf:type schema:CreativeWork
85 sg:pub.10.1038/365203a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009958302
86 https://doi.org/10.1038/365203a0
87 rdf:type schema:CreativeWork
88 sg:pub.10.1038/368287a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044669935
89 https://doi.org/10.1038/368287a0
90 rdf:type schema:CreativeWork
91 sg:pub.10.1038/369181a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038973404
92 https://doi.org/10.1038/369181a0
93 rdf:type schema:CreativeWork
94 sg:pub.10.1038/370412a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023660536
95 https://doi.org/10.1038/370412a0
96 rdf:type schema:CreativeWork
97 sg:pub.10.1038/370446a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053083014
98 https://doi.org/10.1038/370446a0
99 rdf:type schema:CreativeWork
100 https://app.dimensions.ai/details/publication/pub.1082507322 schema:CreativeWork
101 https://doi.org/10.1016/0092-8674(94)90060-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019352815
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0375-9601(94)90989-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002322087
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0375-9601(95)00920-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036519501
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1073/pnas.91.25.11782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004100012
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevlett.71.1477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807476
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevlett.72.1766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808642
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevlett.72.2652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808870
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevlett.72.2984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808969
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1209/0295-5075/28/7/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064230171
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.148313.c schema:alternateName Los Alamos National Laboratory
120 schema:name Center for Nonlinear Studies, Los Alamos National Laboratory, MS-B258, 87545, Los Alamos, New Mexico
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...