Ontology type: schema:ScholarlyArticle Open Access: True
1996-02
AUTHORSG. Alberti, G. Bellettini, M. Cassandro, E. Presutti
ABSTRACTWe consider an Ising spin system with Kac potentials in a torus of ℤd,d>-2, and fix the temperature below its Lebowitz-Penrose critical value. We prove that when the Kac scaling parameter γ vanishes, the log of the probability of an interface becomes proportional to its area and the surface tension, related to the proportionality constant, converges to the van der Waals surface tension. The results are based on the analysis of the rate functionals for Gibbsian large deviations and on the proof that they Γ-converge to the perimeter functional of geometric measure theory (which extends the notion of area). Our considerations include nonsmooth interfaces, proving that the Gibbsian probability of an interface depends only on its area and not on its regularity. More... »
PAGES743-796
http://scigraph.springernature.com/pub.10.1007/bf02179792
DOIhttp://dx.doi.org/10.1007/bf02179792
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1022405438
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Istituto di Matermatiche Applicate \u201cU. Dini\u201d, 56126, Pisa, Italy"
],
"type": "Organization"
},
"familyName": "Alberti",
"givenName": "G.",
"id": "sg:person.016436042355.89",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016436042355.89"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Istituto di Matermatiche Applicate \u201cU. Dini\u201d, 56126, Pisa, Italy"
],
"type": "Organization"
},
"familyName": "Bellettini",
"givenName": "G.",
"id": "sg:person.016521171713.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521171713.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Sapienza University of Rome",
"id": "https://www.grid.ac/institutes/grid.7841.a",
"name": [
"Dipartimento di Fisica, Universit\u00e0 di Roma La Sapienza, 00185, Rome, Italy"
],
"type": "Organization"
},
"familyName": "Cassandro",
"givenName": "M.",
"id": "sg:person.014153262621.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153262621.78"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Rome Tor Vergata",
"id": "https://www.grid.ac/institutes/grid.6530.0",
"name": [
"Dipartimento di Matematica, Universit\u00e0 di Roma Tor Vergata, 00133, Rome, Italy"
],
"type": "Organization"
},
"familyName": "Presutti",
"givenName": "E.",
"id": "sg:person.012167647117.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012167647117.14"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01195883",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002615285",
"https://doi.org/10.1007/bf01195883"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01195883",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002615285",
"https://doi.org/10.1007/bf01195883"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4684-9486-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006563782",
"https://doi.org/10.1007/978-1-4684-9486-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4684-9486-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006563782",
"https://doi.org/10.1007/978-1-4684-9486-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01054339",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016699249",
"https://doi.org/10.1007/bf01054339"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1749-6632.1980.tb18021.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024406582"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00250432",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027285532",
"https://doi.org/10.1007/bf00250432"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00250432",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027285532",
"https://doi.org/10.1007/bf00250432"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00542534",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033983975",
"https://doi.org/10.1007/bf00542534"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00542534",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033983975",
"https://doi.org/10.1007/bf00542534"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00251230",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035706226",
"https://doi.org/10.1007/bf00251230"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00251230",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035706226",
"https://doi.org/10.1007/bf00251230"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0308210500022472",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1054893930"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1703946",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057773888"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1704821",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057774490"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0951-7715/7/3/001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059110866"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/mmono/104",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101567880"
],
"type": "CreativeWork"
}
],
"datePublished": "1996-02",
"datePublishedReg": "1996-02-01",
"description": "We consider an Ising spin system with Kac potentials in a torus of \u2124d,d>-2, and fix the temperature below its Lebowitz-Penrose critical value. We prove that when the Kac scaling parameter \u03b3 vanishes, the log of the probability of an interface becomes proportional to its area and the surface tension, related to the proportionality constant, converges to the van der Waals surface tension. The results are based on the analysis of the rate functionals for Gibbsian large deviations and on the proof that they \u0393-converge to the perimeter functional of geometric measure theory (which extends the notion of area). Our considerations include nonsmooth interfaces, proving that the Gibbsian probability of an interface depends only on its area and not on its regularity.",
"genre": "research_article",
"id": "sg:pub.10.1007/bf02179792",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1040979",
"issn": [
"0022-4715",
"1572-9613"
],
"name": "Journal of Statistical Physics",
"type": "Periodical"
},
{
"issueNumber": "3-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "82"
}
],
"name": "Surface tension in Ising systems with Kac potentials",
"pagination": "743-796",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"6abe4446de2cc3e441dc678749c53b68f6388d3571856412717eed190fe38e2f"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf02179792"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1022405438"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf02179792",
"https://app.dimensions.ai/details/publication/pub.1022405438"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:15",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54014_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2FBF02179792"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02179792'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02179792'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02179792'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02179792'
This table displays all metadata directly associated to this object as RDF triples.
131 TRIPLES
21 PREDICATES
39 URIs
19 LITERALS
7 BLANK NODES