Surface tension in Ising systems with Kac potentials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1996-02

AUTHORS

G. Alberti, G. Bellettini, M. Cassandro, E. Presutti

ABSTRACT

We consider an Ising spin system with Kac potentials in a torus of ℤd,d>-2, and fix the temperature below its Lebowitz-Penrose critical value. We prove that when the Kac scaling parameter γ vanishes, the log of the probability of an interface becomes proportional to its area and the surface tension, related to the proportionality constant, converges to the van der Waals surface tension. The results are based on the analysis of the rate functionals for Gibbsian large deviations and on the proof that they Γ-converge to the perimeter functional of geometric measure theory (which extends the notion of area). Our considerations include nonsmooth interfaces, proving that the Gibbsian probability of an interface depends only on its area and not on its regularity. More... »

PAGES

743-796

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02179792

DOI

http://dx.doi.org/10.1007/bf02179792

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022405438


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Istituto di Matermatiche Applicate \u201cU. Dini\u201d, 56126, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alberti", 
        "givenName": "G.", 
        "id": "sg:person.016436042355.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016436042355.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Istituto di Matermatiche Applicate \u201cU. Dini\u201d, 56126, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bellettini", 
        "givenName": "G.", 
        "id": "sg:person.016521171713.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521171713.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Roma La Sapienza, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cassandro", 
        "givenName": "M.", 
        "id": "sg:person.014153262621.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153262621.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Roma Tor Vergata, 00133, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Presutti", 
        "givenName": "E.", 
        "id": "sg:person.012167647117.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012167647117.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01195883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002615285", 
          "https://doi.org/10.1007/bf01195883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01195883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002615285", 
          "https://doi.org/10.1007/bf01195883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9486-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006563782", 
          "https://doi.org/10.1007/978-1-4684-9486-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9486-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006563782", 
          "https://doi.org/10.1007/978-1-4684-9486-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01054339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016699249", 
          "https://doi.org/10.1007/bf01054339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1980.tb18021.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024406582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00250432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027285532", 
          "https://doi.org/10.1007/bf00250432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00250432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027285532", 
          "https://doi.org/10.1007/bf00250432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00542534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033983975", 
          "https://doi.org/10.1007/bf00542534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00542534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033983975", 
          "https://doi.org/10.1007/bf00542534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035706226", 
          "https://doi.org/10.1007/bf00251230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035706226", 
          "https://doi.org/10.1007/bf00251230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0308210500022472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054893930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1703946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057773888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1704821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057774490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/7/3/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059110866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mmono/104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567880"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-02", 
    "datePublishedReg": "1996-02-01", 
    "description": "We consider an Ising spin system with Kac potentials in a torus of \u2124d,d>-2, and fix the temperature below its Lebowitz-Penrose critical value. We prove that when the Kac scaling parameter \u03b3 vanishes, the log of the probability of an interface becomes proportional to its area and the surface tension, related to the proportionality constant, converges to the van der Waals surface tension. The results are based on the analysis of the rate functionals for Gibbsian large deviations and on the proof that they \u0393-converge to the perimeter functional of geometric measure theory (which extends the notion of area). Our considerations include nonsmooth interfaces, proving that the Gibbsian probability of an interface depends only on its area and not on its regularity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02179792", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "82"
      }
    ], 
    "name": "Surface tension in Ising systems with Kac potentials", 
    "pagination": "743-796", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6abe4446de2cc3e441dc678749c53b68f6388d3571856412717eed190fe38e2f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02179792"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022405438"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02179792", 
      "https://app.dimensions.ai/details/publication/pub.1022405438"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54014_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02179792"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02179792'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02179792'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02179792'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02179792'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02179792 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nd67f4979d090460fb4d3bc992cfa1f97
4 schema:citation sg:pub.10.1007/978-1-4684-9486-0
5 sg:pub.10.1007/bf00250432
6 sg:pub.10.1007/bf00251230
7 sg:pub.10.1007/bf00542534
8 sg:pub.10.1007/bf01054339
9 sg:pub.10.1007/bf01195883
10 https://doi.org/10.1017/s0308210500022472
11 https://doi.org/10.1063/1.1703946
12 https://doi.org/10.1063/1.1704821
13 https://doi.org/10.1088/0951-7715/7/3/001
14 https://doi.org/10.1090/mmono/104
15 https://doi.org/10.1111/j.1749-6632.1980.tb18021.x
16 schema:datePublished 1996-02
17 schema:datePublishedReg 1996-02-01
18 schema:description We consider an Ising spin system with Kac potentials in a torus of ℤd,d>-2, and fix the temperature below its Lebowitz-Penrose critical value. We prove that when the Kac scaling parameter γ vanishes, the log of the probability of an interface becomes proportional to its area and the surface tension, related to the proportionality constant, converges to the van der Waals surface tension. The results are based on the analysis of the rate functionals for Gibbsian large deviations and on the proof that they Γ-converge to the perimeter functional of geometric measure theory (which extends the notion of area). Our considerations include nonsmooth interfaces, proving that the Gibbsian probability of an interface depends only on its area and not on its regularity.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N14a1428696424c53b53eaccfed6f5a37
23 N79b3fcf9560e46bd9e26e99cf0078698
24 sg:journal.1040979
25 schema:name Surface tension in Ising systems with Kac potentials
26 schema:pagination 743-796
27 schema:productId N2e8b2c00d70146ad9eb2421242cccfaf
28 N6ca86598b51f407d84cc9303211b365e
29 N9496685b421f446d87eb46ad5f8e7ab1
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022405438
31 https://doi.org/10.1007/bf02179792
32 schema:sdDatePublished 2019-04-11T12:15
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N2f01590c73eb41638bbb2f8a35e9a0bb
35 schema:url http://link.springer.com/10.1007%2FBF02179792
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N0025665044e041b2916af9bea37c2ae4 schema:name Istituto di Matermatiche Applicate “U. Dini”, 56126, Pisa, Italy
40 rdf:type schema:Organization
41 N14a1428696424c53b53eaccfed6f5a37 schema:volumeNumber 82
42 rdf:type schema:PublicationVolume
43 N2e8b2c00d70146ad9eb2421242cccfaf schema:name doi
44 schema:value 10.1007/bf02179792
45 rdf:type schema:PropertyValue
46 N2f01590c73eb41638bbb2f8a35e9a0bb schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N378055be244e4e6d9f5a1fcca4d9c64f schema:name Istituto di Matermatiche Applicate “U. Dini”, 56126, Pisa, Italy
49 rdf:type schema:Organization
50 N5ce381b71a074e28b2d1301d5deee6b2 rdf:first sg:person.014153262621.78
51 rdf:rest Na58af88e2a974c75915a7ad59689d875
52 N6ca86598b51f407d84cc9303211b365e schema:name dimensions_id
53 schema:value pub.1022405438
54 rdf:type schema:PropertyValue
55 N79b3fcf9560e46bd9e26e99cf0078698 schema:issueNumber 3-4
56 rdf:type schema:PublicationIssue
57 N9496685b421f446d87eb46ad5f8e7ab1 schema:name readcube_id
58 schema:value 6abe4446de2cc3e441dc678749c53b68f6388d3571856412717eed190fe38e2f
59 rdf:type schema:PropertyValue
60 N957e86581db94aff840c4144db9effa6 rdf:first sg:person.016521171713.18
61 rdf:rest N5ce381b71a074e28b2d1301d5deee6b2
62 Na58af88e2a974c75915a7ad59689d875 rdf:first sg:person.012167647117.14
63 rdf:rest rdf:nil
64 Nd67f4979d090460fb4d3bc992cfa1f97 rdf:first sg:person.016436042355.89
65 rdf:rest N957e86581db94aff840c4144db9effa6
66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
67 schema:name Engineering
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
70 schema:name Materials Engineering
71 rdf:type schema:DefinedTerm
72 sg:journal.1040979 schema:issn 0022-4715
73 1572-9613
74 schema:name Journal of Statistical Physics
75 rdf:type schema:Periodical
76 sg:person.012167647117.14 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
77 schema:familyName Presutti
78 schema:givenName E.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012167647117.14
80 rdf:type schema:Person
81 sg:person.014153262621.78 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
82 schema:familyName Cassandro
83 schema:givenName M.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153262621.78
85 rdf:type schema:Person
86 sg:person.016436042355.89 schema:affiliation N0025665044e041b2916af9bea37c2ae4
87 schema:familyName Alberti
88 schema:givenName G.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016436042355.89
90 rdf:type schema:Person
91 sg:person.016521171713.18 schema:affiliation N378055be244e4e6d9f5a1fcca4d9c64f
92 schema:familyName Bellettini
93 schema:givenName G.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521171713.18
95 rdf:type schema:Person
96 sg:pub.10.1007/978-1-4684-9486-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006563782
97 https://doi.org/10.1007/978-1-4684-9486-0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf00250432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027285532
100 https://doi.org/10.1007/bf00250432
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf00251230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035706226
103 https://doi.org/10.1007/bf00251230
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf00542534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033983975
106 https://doi.org/10.1007/bf00542534
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf01054339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016699249
109 https://doi.org/10.1007/bf01054339
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf01195883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002615285
112 https://doi.org/10.1007/bf01195883
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1017/s0308210500022472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054893930
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1063/1.1703946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057773888
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1063/1.1704821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774490
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1088/0951-7715/7/3/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059110866
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1090/mmono/104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567880
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1111/j.1749-6632.1980.tb18021.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024406582
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
127 schema:name Dipartimento di Matematica, Università di Roma Tor Vergata, 00133, Rome, Italy
128 rdf:type schema:Organization
129 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
130 schema:name Dipartimento di Fisica, Università di Roma La Sapienza, 00185, Rome, Italy
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...