Moment closure hierarchies for kinetic theories View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-06

AUTHORS

C. David Levermore

ABSTRACT

This paper presents a systematicnonperturbative derivation of a hierarchy of closed systems of moment equations corresponding to any classical kinetic theory. The first member of the hierarchy is the Euler system, which is based on Maxwellian velocity distributions, while the second member is based on nonisotropic Gaussian velocity distributions. The closure proceeds in two steps. The first ensures that every member of the hierarchy is hyperbolic, has an entropy, and formally recovers the Euler limit. The second involves modifying the collisional terms so that members of the hierarchy beyound the second also recover the correct Navier-Stokes behavior. This is achieved through the introduction of a generalization of the BGK collision operator. The simplest such system in three spatial dimensions is a “14-moment” closure, which also recovers the behavior of the Grad “13-moment” system when the velocity distributions lie near local Maxwellians. The closure procedure can be applied to a general class of kinetic theories. More... »

PAGES

1021-1065

Journal

TITLE

Journal of Statistical Physics

ISSUE

5-6

VOLUME

83

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02179552

DOI

http://dx.doi.org/10.1007/bf02179552

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003473715


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Department of Mathematics and Program in Applied Mathematics, University of Arizona, 85721, Tucson, Arizona"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levermore", 
        "givenName": "C. David", 
        "id": "sg:person.07564172003.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07564172003.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0378-4371(92)90044-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001505948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(92)90044-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001505948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00375586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004894425", 
          "https://doi.org/10.1007/bf00375586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(80)90089-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005519694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160470602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009827263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160470602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009827263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013255539", 
          "https://doi.org/10.1007/bf01238905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013255539", 
          "https://doi.org/10.1007/bf01238905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mma.1670110406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021951648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mma.1670110406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021951648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1039-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022237469", 
          "https://doi.org/10.1007/978-1-4612-1039-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1039-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022237469", 
          "https://doi.org/10.1007/978-1-4612-1039-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605309308820972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028438711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1116-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032077060", 
          "https://doi.org/10.1007/978-1-4612-1116-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1116-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032077060", 
          "https://doi.org/10.1007/978-1-4612-1116-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01026608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034122195", 
          "https://doi.org/10.1007/bf01026608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01026608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034122195", 
          "https://doi.org/10.1007/bf01026608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00411459408203878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037350674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(93)90762-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037653228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(93)90762-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037653228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038384466", 
          "https://doi.org/10.1007/bf00251722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038384466", 
          "https://doi.org/10.1007/bf00251722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038384466", 
          "https://doi.org/10.1007/bf00251722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(83)90118-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040386599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstl.1867.0004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043000377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1047633579", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0447-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047633579", 
          "https://doi.org/10.1007/978-1-4684-0447-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0447-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047633579", 
          "https://doi.org/10.1007/978-1-4684-0447-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160020403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049725519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00411459408204345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052781489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.68.8.1686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053315693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1996.0149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054488998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/20/18/047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059069108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.94.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.94.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.7193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.7193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/zna-1965-1001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067567692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556235"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-06", 
    "datePublishedReg": "1996-06-01", 
    "description": "This paper presents a systematicnonperturbative derivation of a hierarchy of closed systems of moment equations corresponding to any classical kinetic theory. The first member of the hierarchy is the Euler system, which is based on Maxwellian velocity distributions, while the second member is based on nonisotropic Gaussian velocity distributions. The closure proceeds in two steps. The first ensures that every member of the hierarchy is hyperbolic, has an entropy, and formally recovers the Euler limit. The second involves modifying the collisional terms so that members of the hierarchy beyound the second also recover the correct Navier-Stokes behavior. This is achieved through the introduction of a generalization of the BGK collision operator. The simplest such system in three spatial dimensions is a \u201c14-moment\u201d closure, which also recovers the behavior of the Grad \u201c13-moment\u201d system when the velocity distributions lie near local Maxwellians. The closure procedure can be applied to a general class of kinetic theories.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02179552", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "83"
      }
    ], 
    "name": "Moment closure hierarchies for kinetic theories", 
    "pagination": "1021-1065", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "108c6b53936a3e1f3d8e5cb1a7c120109f1a939dc319e1207f7043d8f0c16bf2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02179552"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003473715"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02179552", 
      "https://app.dimensions.ai/details/publication/pub.1003473715"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54014_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02179552"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02179552'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02179552'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02179552'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02179552'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02179552 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5e93689631a74b998f83e8d396af260a
4 schema:citation sg:pub.10.1007/978-1-4612-1039-9
5 sg:pub.10.1007/978-1-4612-1116-7
6 sg:pub.10.1007/978-1-4684-0447-0
7 sg:pub.10.1007/bf00251722
8 sg:pub.10.1007/bf00375586
9 sg:pub.10.1007/bf01026608
10 sg:pub.10.1007/bf01238905
11 https://app.dimensions.ai/details/publication/pub.1047633579
12 https://doi.org/10.1002/cpa.3160020403
13 https://doi.org/10.1002/cpa.3160470602
14 https://doi.org/10.1002/mma.1670110406
15 https://doi.org/10.1006/jcph.1996.0149
16 https://doi.org/10.1016/0021-9991(83)90118-3
17 https://doi.org/10.1016/0022-0396(80)90089-3
18 https://doi.org/10.1016/0375-9601(93)90762-o
19 https://doi.org/10.1016/0378-4371(92)90044-q
20 https://doi.org/10.1073/pnas.68.8.1686
21 https://doi.org/10.1080/00411459408203878
22 https://doi.org/10.1080/00411459408204345
23 https://doi.org/10.1080/03605309308820972
24 https://doi.org/10.1088/0305-4470/20/18/047
25 https://doi.org/10.1098/rstl.1867.0004
26 https://doi.org/10.1103/physrev.94.511
27 https://doi.org/10.1103/physreva.40.7193
28 https://doi.org/10.1137/1.9781611970562
29 https://doi.org/10.1515/zna-1965-1001
30 schema:datePublished 1996-06
31 schema:datePublishedReg 1996-06-01
32 schema:description This paper presents a systematicnonperturbative derivation of a hierarchy of closed systems of moment equations corresponding to any classical kinetic theory. The first member of the hierarchy is the Euler system, which is based on Maxwellian velocity distributions, while the second member is based on nonisotropic Gaussian velocity distributions. The closure proceeds in two steps. The first ensures that every member of the hierarchy is hyperbolic, has an entropy, and formally recovers the Euler limit. The second involves modifying the collisional terms so that members of the hierarchy beyound the second also recover the correct Navier-Stokes behavior. This is achieved through the introduction of a generalization of the BGK collision operator. The simplest such system in three spatial dimensions is a “14-moment” closure, which also recovers the behavior of the Grad “13-moment” system when the velocity distributions lie near local Maxwellians. The closure procedure can be applied to a general class of kinetic theories.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf Na7bbc62673b7493482a6559926a14a92
37 Nb33821f3f57b42d193c4963617ed2034
38 sg:journal.1040979
39 schema:name Moment closure hierarchies for kinetic theories
40 schema:pagination 1021-1065
41 schema:productId N0bf6455ce791408faaeb0c2ab9a0fe1a
42 N0d4b66fcb1764aacbad17ef97910a024
43 N8cebe91800cd4d229169a6811daaf082
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003473715
45 https://doi.org/10.1007/bf02179552
46 schema:sdDatePublished 2019-04-11T12:15
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nd5e6402497084eef90ddf2dd9b8f6533
49 schema:url http://link.springer.com/10.1007%2FBF02179552
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0bf6455ce791408faaeb0c2ab9a0fe1a schema:name readcube_id
54 schema:value 108c6b53936a3e1f3d8e5cb1a7c120109f1a939dc319e1207f7043d8f0c16bf2
55 rdf:type schema:PropertyValue
56 N0d4b66fcb1764aacbad17ef97910a024 schema:name dimensions_id
57 schema:value pub.1003473715
58 rdf:type schema:PropertyValue
59 N5e93689631a74b998f83e8d396af260a rdf:first sg:person.07564172003.70
60 rdf:rest rdf:nil
61 N8cebe91800cd4d229169a6811daaf082 schema:name doi
62 schema:value 10.1007/bf02179552
63 rdf:type schema:PropertyValue
64 Na7bbc62673b7493482a6559926a14a92 schema:volumeNumber 83
65 rdf:type schema:PublicationVolume
66 Nb33821f3f57b42d193c4963617ed2034 schema:issueNumber 5-6
67 rdf:type schema:PublicationIssue
68 Nd5e6402497084eef90ddf2dd9b8f6533 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
71 schema:name Mathematical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
74 schema:name Pure Mathematics
75 rdf:type schema:DefinedTerm
76 sg:journal.1040979 schema:issn 0022-4715
77 1572-9613
78 schema:name Journal of Statistical Physics
79 rdf:type schema:Periodical
80 sg:person.07564172003.70 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
81 schema:familyName Levermore
82 schema:givenName C. David
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07564172003.70
84 rdf:type schema:Person
85 sg:pub.10.1007/978-1-4612-1039-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022237469
86 https://doi.org/10.1007/978-1-4612-1039-9
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/978-1-4612-1116-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032077060
89 https://doi.org/10.1007/978-1-4612-1116-7
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/978-1-4684-0447-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047633579
92 https://doi.org/10.1007/978-1-4684-0447-0
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf00251722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038384466
95 https://doi.org/10.1007/bf00251722
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf00375586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004894425
98 https://doi.org/10.1007/bf00375586
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf01026608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034122195
101 https://doi.org/10.1007/bf01026608
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01238905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013255539
104 https://doi.org/10.1007/bf01238905
105 rdf:type schema:CreativeWork
106 https://app.dimensions.ai/details/publication/pub.1047633579 schema:CreativeWork
107 https://doi.org/10.1002/cpa.3160020403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049725519
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/cpa.3160470602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009827263
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/mma.1670110406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021951648
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1006/jcph.1996.0149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054488998
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0021-9991(83)90118-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040386599
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0022-0396(80)90089-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005519694
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0375-9601(93)90762-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1037653228
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0378-4371(92)90044-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1001505948
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1073/pnas.68.8.1686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053315693
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1080/00411459408203878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037350674
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1080/00411459408204345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052781489
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1080/03605309308820972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028438711
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1088/0305-4470/20/18/047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059069108
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1098/rstl.1867.0004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043000377
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrev.94.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060462281
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physreva.40.7193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060480722
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1137/1.9781611970562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556235
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1515/zna-1965-1001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067567692
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.134563.6 schema:alternateName University of Arizona
144 schema:name Department of Mathematics and Program in Applied Mathematics, University of Arizona, 85721, Tucson, Arizona
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...