A multiprojection algorithm using Bregman projections in a product space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-09

AUTHORS

Yair Censor, Tommy Elfving

ABSTRACT

Generalized distances give rise to generalized projections into convex sets. An important question is whether or not one can use within the same projection algorithm different types of such generalized projections. This question has practical consequences in the area of signal detection and image recovery in situations that can be formulated mathematically as a convex feasibility problem. Using an extension of Pierra's product space formalism, we show here that a multiprojection algorithm converges. Our algorithm is fully simultaneous, i.e., it uses in each iterative stepall sets of the convex feasibility problem. Different multiprojection algorithms can be derived from our algorithmic scheme by a judicious choice of the Bregman functions which govern the process. As a by-product of our investigation we also obtain blockiterative schemes for certain kinds of linearly constraned optimization problems. More... »

PAGES

221-239

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02142692

DOI

http://dx.doi.org/10.1007/bf02142692

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045687057


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Haifa", 
          "id": "https://www.grid.ac/institutes/grid.18098.38", 
          "name": [
            "Department of Mathematics and Computer Science, University of Haifa, Mt. Carmel, 31905, Haifa, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Censor", 
        "givenName": "Yair", 
        "id": "sg:person.01036363237.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036363237.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Link\u00f6ping University", 
          "id": "https://www.grid.ac/institutes/grid.5640.7", 
          "name": [
            "Department of Mathematics, Link\u00f6ping University, S-581 83, Link\u00f6ping, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elfving", 
        "givenName": "Tommy", 
        "id": "sg:person.07354261223.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354261223.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01589408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001146510", 
          "https://doi.org/10.1007/bf01589408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(90)90204-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001700151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0041-5553(67)90040-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010322999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00940051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015813463", 
          "https://doi.org/10.1007/bf00940051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02522667.1987.10698894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021738767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00934676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022305433", 
          "https://doi.org/10.1007/bf00934676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0895-7177(89)90358-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032400820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02612715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032552847", 
          "https://doi.org/10.1007/bf02612715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02612715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032552847", 
          "https://doi.org/10.1007/bf02612715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01582891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032626881", 
          "https://doi.org/10.1007/bf01582891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(80)90171-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034225642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(81)90139-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036932429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041695300", 
          "https://doi.org/10.1007/bf01580719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041695300", 
          "https://doi.org/10.1007/bf01580719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00940283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044149593", 
          "https://doi.org/10.1007/bf00940283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0041-5553(67)90113-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046711538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207169008803865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046933150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177692379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047514421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01396365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048976726", 
          "https://doi.org/10.1007/bf01396365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.50370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061099917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.214546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0801025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062854138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1023097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062861656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176348385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.17.3.670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064723547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.18.1.202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064723575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/-24-1-145-163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092029102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400873173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096968462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-9608-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109716867", 
          "https://doi.org/10.1007/978-94-010-9608-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-9608-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109716867", 
          "https://doi.org/10.1007/978-94-010-9608-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-09", 
    "datePublishedReg": "1994-09-01", 
    "description": "Generalized distances give rise to generalized projections into convex sets. An important question is whether or not one can use within the same projection algorithm different types of such generalized projections. This question has practical consequences in the area of signal detection and image recovery in situations that can be formulated mathematically as a convex feasibility problem. Using an extension of Pierra's product space formalism, we show here that a multiprojection algorithm converges. Our algorithm is fully simultaneous, i.e., it uses in each iterative stepall sets of the convex feasibility problem. Different multiprojection algorithms can be derived from our algorithmic scheme by a judicious choice of the Bregman functions which govern the process. As a by-product of our investigation we also obtain blockiterative schemes for certain kinds of linearly constraned optimization problems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02142692", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050467", 
        "issn": [
          "1017-1398", 
          "1572-9265"
        ], 
        "name": "Numerical Algorithms", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "A multiprojection algorithm using Bregman projections in a product space", 
    "pagination": "221-239", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d9a0cd2719e789dbd16c6284f09033a75daa88b2b08685d49a18688dc2c2363b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02142692"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045687057"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02142692", 
      "https://app.dimensions.ai/details/publication/pub.1045687057"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118305_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02142692"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02142692'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02142692'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02142692'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02142692'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02142692 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N01cf018e84c747c9833025b6b7a61abc
4 schema:citation sg:pub.10.1007/978-94-010-9608-9
5 sg:pub.10.1007/bf00934676
6 sg:pub.10.1007/bf00940051
7 sg:pub.10.1007/bf00940283
8 sg:pub.10.1007/bf01396365
9 sg:pub.10.1007/bf01580719
10 sg:pub.10.1007/bf01582891
11 sg:pub.10.1007/bf01589408
12 sg:pub.10.1007/bf02612715
13 https://doi.org/10.1016/0024-3795(80)90171-8
14 https://doi.org/10.1016/0024-3795(81)90139-7
15 https://doi.org/10.1016/0024-3795(90)90204-p
16 https://doi.org/10.1016/0041-5553(67)90040-7
17 https://doi.org/10.1016/0041-5553(67)90113-9
18 https://doi.org/10.1016/0895-7177(89)90358-0
19 https://doi.org/10.1080/00207169008803865
20 https://doi.org/10.1080/02522667.1987.10698894
21 https://doi.org/10.1109/18.50370
22 https://doi.org/10.1109/5.214546
23 https://doi.org/10.1137/0801025
24 https://doi.org/10.1137/1023097
25 https://doi.org/10.1214/aoms/1177692379
26 https://doi.org/10.1214/aos/1176348385
27 https://doi.org/10.1287/moor.17.3.670
28 https://doi.org/10.1287/moor.18.1.202
29 https://doi.org/10.1515/9781400873173
30 https://doi.org/10.4064/-24-1-145-163
31 schema:datePublished 1994-09
32 schema:datePublishedReg 1994-09-01
33 schema:description Generalized distances give rise to generalized projections into convex sets. An important question is whether or not one can use within the same projection algorithm different types of such generalized projections. This question has practical consequences in the area of signal detection and image recovery in situations that can be formulated mathematically as a convex feasibility problem. Using an extension of Pierra's product space formalism, we show here that a multiprojection algorithm converges. Our algorithm is fully simultaneous, i.e., it uses in each iterative stepall sets of the convex feasibility problem. Different multiprojection algorithms can be derived from our algorithmic scheme by a judicious choice of the Bregman functions which govern the process. As a by-product of our investigation we also obtain blockiterative schemes for certain kinds of linearly constraned optimization problems.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N8d8129ebfcb44c29a434226e2fe94aba
38 Na7d78bffd8be407db197c78e1fe3dfa9
39 sg:journal.1050467
40 schema:name A multiprojection algorithm using Bregman projections in a product space
41 schema:pagination 221-239
42 schema:productId N41c52059e8f3471894b3e9d410065888
43 N713a3b36bc0d45cebe51623a7fa33c5e
44 Ne47da476d5884d019a637d45c8aa8138
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045687057
46 https://doi.org/10.1007/bf02142692
47 schema:sdDatePublished 2019-04-11T12:03
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nfb3bb9a1b3624828a3b1cf17abbd4d13
50 schema:url http://link.springer.com/10.1007%2FBF02142692
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N01cf018e84c747c9833025b6b7a61abc rdf:first sg:person.01036363237.13
55 rdf:rest Ndf89665098e545d6824a9c10d551a620
56 N41c52059e8f3471894b3e9d410065888 schema:name readcube_id
57 schema:value d9a0cd2719e789dbd16c6284f09033a75daa88b2b08685d49a18688dc2c2363b
58 rdf:type schema:PropertyValue
59 N713a3b36bc0d45cebe51623a7fa33c5e schema:name doi
60 schema:value 10.1007/bf02142692
61 rdf:type schema:PropertyValue
62 N8d8129ebfcb44c29a434226e2fe94aba schema:volumeNumber 8
63 rdf:type schema:PublicationVolume
64 Na7d78bffd8be407db197c78e1fe3dfa9 schema:issueNumber 2
65 rdf:type schema:PublicationIssue
66 Ndf89665098e545d6824a9c10d551a620 rdf:first sg:person.07354261223.62
67 rdf:rest rdf:nil
68 Ne47da476d5884d019a637d45c8aa8138 schema:name dimensions_id
69 schema:value pub.1045687057
70 rdf:type schema:PropertyValue
71 Nfb3bb9a1b3624828a3b1cf17abbd4d13 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
77 schema:name Numerical and Computational Mathematics
78 rdf:type schema:DefinedTerm
79 sg:journal.1050467 schema:issn 1017-1398
80 1572-9265
81 schema:name Numerical Algorithms
82 rdf:type schema:Periodical
83 sg:person.01036363237.13 schema:affiliation https://www.grid.ac/institutes/grid.18098.38
84 schema:familyName Censor
85 schema:givenName Yair
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036363237.13
87 rdf:type schema:Person
88 sg:person.07354261223.62 schema:affiliation https://www.grid.ac/institutes/grid.5640.7
89 schema:familyName Elfving
90 schema:givenName Tommy
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354261223.62
92 rdf:type schema:Person
93 sg:pub.10.1007/978-94-010-9608-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716867
94 https://doi.org/10.1007/978-94-010-9608-9
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf00934676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022305433
97 https://doi.org/10.1007/bf00934676
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf00940051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015813463
100 https://doi.org/10.1007/bf00940051
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf00940283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044149593
103 https://doi.org/10.1007/bf00940283
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf01396365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048976726
106 https://doi.org/10.1007/bf01396365
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf01580719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041695300
109 https://doi.org/10.1007/bf01580719
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf01582891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032626881
112 https://doi.org/10.1007/bf01582891
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf01589408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001146510
115 https://doi.org/10.1007/bf01589408
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf02612715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032552847
118 https://doi.org/10.1007/bf02612715
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0024-3795(80)90171-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034225642
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0024-3795(81)90139-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036932429
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0024-3795(90)90204-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1001700151
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0041-5553(67)90040-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010322999
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0041-5553(67)90113-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046711538
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0895-7177(89)90358-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032400820
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/00207169008803865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046933150
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/02522667.1987.10698894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021738767
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/18.50370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061099917
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/5.214546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179007
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1137/0801025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062854138
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1137/1023097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062861656
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1214/aoms/1177692379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047514421
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1214/aos/1176348385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408602
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1287/moor.17.3.670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064723547
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1287/moor.18.1.202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064723575
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1515/9781400873173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096968462
153 rdf:type schema:CreativeWork
154 https://doi.org/10.4064/-24-1-145-163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092029102
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.18098.38 schema:alternateName University of Haifa
157 schema:name Department of Mathematics and Computer Science, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.5640.7 schema:alternateName Linköping University
160 schema:name Department of Mathematics, Linköping University, S-581 83, Linköping, Sweden
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...