Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-12

AUTHORS

Holger Wendland

ABSTRACT

We construct a new class of positive definite and compactly supported radial functions which consist of a univariate polynomial within their support. For given smoothness and space dimension it is proved that they are of minimal degree and unique up to a constant factor. Finally, we establish connections between already known functions of this kind. More... »

PAGES

389-396

References to SciGraph publications

Journal

TITLE

Advances in Computational Mathematics

ISSUE

1

VOLUME

4

Related Patents

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02123482

DOI

http://dx.doi.org/10.1007/bf02123482

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018616009


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institut f\u00fcr Numerische und Angewandte Mathematik, Universit\u00e4t G\u00f6ttingen, Lotzestra\u00dfe 16\u201318, D-37083, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wendland", 
        "givenName": "Holger", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0021-9045(92)90050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012718459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02432002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020684639", 
          "https://doi.org/10.1007/bf02432002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01893414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025705856", 
          "https://doi.org/10.1007/bf01893414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01893414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025705856", 
          "https://doi.org/10.1007/bf01893414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1982-0637296-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047147394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03177517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051151493", 
          "https://doi.org/10.1007/bf03177517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03177517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051151493", 
          "https://doi.org/10.1007/bf03177517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0506076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062845905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0907043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062855828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2007474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069695135"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-12", 
    "datePublishedReg": "1995-12-01", 
    "description": "We construct a new class of positive definite and compactly supported radial functions which consist of a univariate polynomial within their support. For given smoothness and space dimension it is proved that they are of minimal degree and unique up to a constant factor. Finally, we establish connections between already known functions of this kind.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02123482", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1045108", 
        "issn": [
          "1019-7168", 
          "1572-9044"
        ], 
        "name": "Advances in Computational Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree", 
    "pagination": "389-396", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "58b29def5da8e8af707a0bac83265d2e16f3b2e7f07827522cc15cccd6da08fe"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02123482"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018616009"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02123482", 
      "https://app.dimensions.ai/details/publication/pub.1018616009"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118332_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02123482"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02123482'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02123482'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02123482'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02123482'


 

This table displays all metadata directly associated to this object as RDF triples.

86 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02123482 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N618413cb07e24f649b1dc9539444c058
4 schema:citation sg:pub.10.1007/bf01893414
5 sg:pub.10.1007/bf02432002
6 sg:pub.10.1007/bf03177517
7 https://doi.org/10.1016/0021-9045(92)90050-x
8 https://doi.org/10.1090/s0025-5718-1982-0637296-4
9 https://doi.org/10.1137/0506076
10 https://doi.org/10.1137/0907043
11 https://doi.org/10.2307/2007474
12 schema:datePublished 1995-12
13 schema:datePublishedReg 1995-12-01
14 schema:description We construct a new class of positive definite and compactly supported radial functions which consist of a univariate polynomial within their support. For given smoothness and space dimension it is proved that they are of minimal degree and unique up to a constant factor. Finally, we establish connections between already known functions of this kind.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N8fe5feb4d2c44cd6bf64f59bd058a754
19 Ncd0a259041ca45dba09c881499a7b8e8
20 sg:journal.1045108
21 schema:name Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
22 schema:pagination 389-396
23 schema:productId N7b43338f16e44bce91aba2cfce6c6836
24 Naa8a3fcb64b54200a1aa75bf7f00c9fa
25 Nb24553e50df04e448346e00d85e2efda
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018616009
27 https://doi.org/10.1007/bf02123482
28 schema:sdDatePublished 2019-04-11T12:05
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N32945117f63f4599b62a76ecc1fc2778
31 schema:url http://link.springer.com/10.1007/BF02123482
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N32945117f63f4599b62a76ecc1fc2778 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N4535fa20efab4b4b998ec7d5d3444bdd schema:affiliation Ne7cc21db6fe24f2e811aabeecb14a317
38 schema:familyName Wendland
39 schema:givenName Holger
40 rdf:type schema:Person
41 N618413cb07e24f649b1dc9539444c058 rdf:first N4535fa20efab4b4b998ec7d5d3444bdd
42 rdf:rest rdf:nil
43 N7b43338f16e44bce91aba2cfce6c6836 schema:name doi
44 schema:value 10.1007/bf02123482
45 rdf:type schema:PropertyValue
46 N8fe5feb4d2c44cd6bf64f59bd058a754 schema:issueNumber 1
47 rdf:type schema:PublicationIssue
48 Naa8a3fcb64b54200a1aa75bf7f00c9fa schema:name dimensions_id
49 schema:value pub.1018616009
50 rdf:type schema:PropertyValue
51 Nb24553e50df04e448346e00d85e2efda schema:name readcube_id
52 schema:value 58b29def5da8e8af707a0bac83265d2e16f3b2e7f07827522cc15cccd6da08fe
53 rdf:type schema:PropertyValue
54 Ncd0a259041ca45dba09c881499a7b8e8 schema:volumeNumber 4
55 rdf:type schema:PublicationVolume
56 Ne7cc21db6fe24f2e811aabeecb14a317 schema:name Institut für Numerische und Angewandte Mathematik, Universität Göttingen, Lotzestraße 16–18, D-37083, Göttingen, Germany
57 rdf:type schema:Organization
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1045108 schema:issn 1019-7168
65 1572-9044
66 schema:name Advances in Computational Mathematics
67 rdf:type schema:Periodical
68 sg:pub.10.1007/bf01893414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025705856
69 https://doi.org/10.1007/bf01893414
70 rdf:type schema:CreativeWork
71 sg:pub.10.1007/bf02432002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020684639
72 https://doi.org/10.1007/bf02432002
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf03177517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051151493
75 https://doi.org/10.1007/bf03177517
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/0021-9045(92)90050-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012718459
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1090/s0025-5718-1982-0637296-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047147394
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1137/0506076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062845905
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1137/0907043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855828
84 rdf:type schema:CreativeWork
85 https://doi.org/10.2307/2007474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069695135
86 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...