Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-11

AUTHORS

Howard Ochman, Allan C. Wilson

ABSTRACT

This paper constructs a temporal scale for bacterial evolution by tying ecological events that took place at known times in the geological past to specific branch points in the genealogical tree relating the 16S ribosomal RNAs of eubacteria, mitochondria, and chloroplasts. One thus obtains a relationship between time and bacterial RNA divergence which can be used to estimate times of divergence between other branches in the bacterial tree. According to this approach,Salmonella typhimurium andEscherichia coli diverged between 120 and 160 million years (Myr) ago, a date which fits with evidence that the chief habitats occupied now by these two enteric species became available that long ago.The median extent of divergence betweenS. typhimurium andE. coli at synonymous sites for 21 kilobases of protein-coding DNA is 100%. This implies a silent substitution rate of 0.7–0.8%/Myr—a rate remarkably similar to that observed in the nuclear genes of mammals, invertebrates, and flowering plants. Similarities in the substitution rates of eucaryotes and procaryotes are not limited to silent substitutions in protein-coding regions. The average substitution rate for 16S rRNA in eubacteria is about 1%/50 Myr, similar to the average rate for 18S rRNA in vertebrates and flowering plants. Likewise, we estimate a mean rate of roughly 1%/25 Myr for 5S rRNA in both eubacteria and eucaryotes.For a few protein-coding genes of these enteric bacteria, the extent of silent substitution since the divergence ofS. typhimurium andE. coli is much lower than 100%, owing to extreme bias in the usage of synonymous codons. Furthermore, in these bacteria, rates of amino acid replacement were about 20 times lower, on average, than the silent rate. By contranst, for the mammalian genes studied to date, the average replacement rate is only four to five times lower than the rate of silent substitution. More... »

PAGES

74-86

References to SciGraph publications

  • 1984-11. Molecular evolution inDrosophila and the higher diptera in JOURNAL OF MOLECULAR EVOLUTION
  • 1985-08. Phylogenetic relationships among eukaryotic kingdoms inferred from ribosomal RNA sequences in JOURNAL OF MOLECULAR EVOLUTION
  • 1977-01. Rates, sample sizes, and the neutrality hypothesis for electrophoresis in evolutionary studies in NATURE
  • 1985-08. New perspectives on bacterial ferredoxin evolution in JOURNAL OF MOLECULAR EVOLUTION
  • 1985. Evolution of DNA Sequences in MOLECULAR EVOLUTIONARY GENETICS
  • 1971-03. The structure of cytochromec and the rates of molecular evolution in JOURNAL OF MOLECULAR EVOLUTION
  • 1982-07. Mitochondrial DNA sequences of primates: Tempo and mode of evolution in JOURNAL OF MOLECULAR EVOLUTION
  • 1986-01. Primate η-globin DNA sequences and man's place among the great apes in NATURE
  • 1985-04. Comparison of the nucleotide sequence of soybean 18S rRNA with the sequences of other small-subunit rRNAs in JOURNAL OF MOLECULAR EVOLUTION
  • 1986-03. Evolution of the atmosphere and oceans in NATURE
  • 1985-09. Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen fixing bacteria in ARCHIVES OF MICROBIOLOGY
  • 1984-05. Conservation and change in the DNA sequences coding for alcohol dehydrogenase in sibling species of Drosophila in NATURE
  • 1973-06. Eukaryotes-Prokaryotes Divergence estimated by 5S Ribosomal RNA Sequences in NATURE
  • 1980-03. Cytochrome c and the evolution of energy metabolism. in SCIENTIFIC AMERICAN
  • 1984. Extent of Protein Polymorphism and the Neutral Mutation Theory in EVOLUTIONARY BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02111283

    DOI

    http://dx.doi.org/10.1007/bf02111283

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026736092

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/3125340


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Evolution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fossils", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Variation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Ribosomal", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Biochemistry, University of California, 94720, Berkeley, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Biochemistry, University of California, 94720, Berkeley, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ochman", 
            "givenName": "Howard", 
            "id": "sg:person.0600333516.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600333516.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Animal Genetics, University of Edinburgh, EH9 3JN, Edinburgh, Scotland UK", 
              "id": "http://www.grid.ac/institutes/grid.4305.2", 
              "name": [
                "Department of Biochemistry, University of California, 94720, Berkeley, California, USA", 
                "Institute of Animal Genetics, University of Edinburgh, EH9 3JN, Edinburgh, Scotland UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wilson", 
            "givenName": "Allan C.", 
            "id": "sg:person.011447324772.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011447324772.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4615-6974-9_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089803019", 
              "https://doi.org/10.1007/978-1-4615-6974-9_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02105802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041320814", 
              "https://doi.org/10.1007/bf02105802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00491901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032802658", 
              "https://doi.org/10.1007/bf00491901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02102358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001492228", 
              "https://doi.org/10.1007/bf02102358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02100622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013867179", 
              "https://doi.org/10.1007/bf02100622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/newbio243199a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040485034", 
              "https://doi.org/10.1038/newbio243199a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/265024a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048904238", 
              "https://doi.org/10.1038/265024a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01659392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035638159", 
              "https://doi.org/10.1007/bf01659392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02105801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007019589", 
              "https://doi.org/10.1007/bf02105801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican0380-136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056512229", 
              "https://doi.org/10.1038/scientificamerican0380-136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01734101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033529186", 
              "https://doi.org/10.1007/bf01734101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/309425a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008013691", 
              "https://doi.org/10.1038/309425a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-4988-4_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089811828", 
              "https://doi.org/10.1007/978-1-4684-4988-4_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/320027a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029383273", 
              "https://doi.org/10.1038/320027a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/319234a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040349240", 
              "https://doi.org/10.1038/319234a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1987-11", 
        "datePublishedReg": "1987-11-01", 
        "description": "This paper constructs a temporal scale for bacterial evolution by tying ecological events that took place at known times in the geological past to specific branch points in the genealogical tree relating the 16S ribosomal RNAs of eubacteria, mitochondria, and chloroplasts. One thus obtains a relationship between time and bacterial RNA divergence which can be used to estimate times of divergence between other branches in the bacterial tree. According to this approach,Salmonella typhimurium andEscherichia coli diverged between 120 and 160 million years (Myr) ago, a date which fits with evidence that the chief habitats occupied now by these two enteric species became available that long ago.The median extent of divergence betweenS. typhimurium andE. coli at synonymous sites for 21 kilobases of protein-coding DNA is 100%. This implies a silent substitution rate of 0.7\u20130.8%/Myr\u2014a rate remarkably similar to that observed in the nuclear genes of mammals, invertebrates, and flowering plants. Similarities in the substitution rates of eucaryotes and procaryotes are not limited to silent substitutions in protein-coding regions. The average substitution rate for 16S rRNA in eubacteria is about 1%/50 Myr, similar to the average rate for 18S rRNA in vertebrates and flowering plants. Likewise, we estimate a mean rate of roughly 1%/25 Myr for 5S rRNA in both eubacteria and eucaryotes.For a few protein-coding genes of these enteric bacteria, the extent of silent substitution since the divergence ofS. typhimurium andE. coli is much lower than 100%, owing to extreme bias in the usage of synonymous codons. Furthermore, in these bacteria, rates of amino acid replacement were about 20 times lower, on average, than the silent rate. By contranst, for the mammalian genes studied to date, the average replacement rate is only four to five times lower than the rate of silent substitution.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02111283", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2378445", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1016442", 
            "issn": [
              "0022-2844", 
              "1432-1432"
            ], 
            "name": "Journal of Molecular Evolution", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "keywords": [
          "substitution rates", 
          "silent substitutions", 
          "protein-coding genes", 
          "time of divergence", 
          "protein-coding DNA", 
          "silent substitution rate", 
          "protein-coding regions", 
          "amino acid replacements", 
          "bacterial tree", 
          "mammalian genes", 
          "nuclear genes", 
          "bacterial evolution", 
          "average substitution rate", 
          "ribosomal RNAs", 
          "synonymous sites", 
          "cellular genome", 
          "synonymous codons", 
          "acid replacements", 
          "silent rate", 
          "ecological events", 
          "enteric species", 
          "eubacteria", 
          "rRNA", 
          "enteric bacteria", 
          "genes", 
          "eucaryotes", 
          "extreme bias", 
          "genealogical tree", 
          "coli", 
          "divergence", 
          "bacteria", 
          "plants", 
          "temporal scales", 
          "andEscherichia coli", 
          "andE.", 
          "trees", 
          "geological past", 
          "branch points", 
          "invertebrates", 
          "vertebrates", 
          "chloroplasts", 
          "genome", 
          "procaryotes", 
          "RNAs", 
          "habitats", 
          "kilobases", 
          "mammals", 
          "codon", 
          "mitochondria", 
          "betweenS.", 
          "species", 
          "substitution", 
          "DNA", 
          "evolution", 
          "contranst", 
          "similarity", 
          "sites", 
          "evidence", 
          "Myr", 
          "date", 
          "replacement rate", 
          "region", 
          "average replacement rate", 
          "extent", 
          "average rate", 
          "events", 
          "mean rate", 
          "rate", 
          "branches", 
          "replacement", 
          "relationship", 
          "time", 
          "approach", 
          "scale", 
          "past", 
          "place", 
          "years", 
          "usage", 
          "bias", 
          "point", 
          "paper", 
          "median extent"
        ], 
        "name": "Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes", 
        "pagination": "74-86", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026736092"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02111283"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "3125340"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02111283", 
          "https://app.dimensions.ai/details/publication/pub.1026736092"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_213.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02111283"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02111283'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02111283'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02111283'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02111283'


     

    This table displays all metadata directly associated to this object as RDF triples.

    248 TRIPLES      21 PREDICATES      131 URIs      108 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02111283 schema:about N168bb12b33784af0b37d7f2cc1cfa913
    2 N3a3eb6a8bb474c8fa5da72fb2a03f0f6
    3 N4b4eb266977d47c9bb4c83d6e116d88b
    4 N8268731de0d14575b7912c907253643c
    5 Nc5c1cbec88a8406b84e5414feee6e3e9
    6 Nda27da27990941e2b25edaa879c5358e
    7 Nddb7f17431eb495b805e23baa93a7715
    8 Nec3d86b5279f4720b7b909dbeb0c61fd
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author N9ee1cf72695449be95c4cffea5eb52d9
    12 schema:citation sg:pub.10.1007/978-1-4615-6974-9_3
    13 sg:pub.10.1007/978-1-4684-4988-4_1
    14 sg:pub.10.1007/bf00491901
    15 sg:pub.10.1007/bf01659392
    16 sg:pub.10.1007/bf01734101
    17 sg:pub.10.1007/bf02100622
    18 sg:pub.10.1007/bf02102358
    19 sg:pub.10.1007/bf02105801
    20 sg:pub.10.1007/bf02105802
    21 sg:pub.10.1038/265024a0
    22 sg:pub.10.1038/309425a0
    23 sg:pub.10.1038/319234a0
    24 sg:pub.10.1038/320027a0
    25 sg:pub.10.1038/newbio243199a0
    26 sg:pub.10.1038/scientificamerican0380-136
    27 schema:datePublished 1987-11
    28 schema:datePublishedReg 1987-11-01
    29 schema:description This paper constructs a temporal scale for bacterial evolution by tying ecological events that took place at known times in the geological past to specific branch points in the genealogical tree relating the 16S ribosomal RNAs of eubacteria, mitochondria, and chloroplasts. One thus obtains a relationship between time and bacterial RNA divergence which can be used to estimate times of divergence between other branches in the bacterial tree. According to this approach,Salmonella typhimurium andEscherichia coli diverged between 120 and 160 million years (Myr) ago, a date which fits with evidence that the chief habitats occupied now by these two enteric species became available that long ago.The median extent of divergence betweenS. typhimurium andE. coli at synonymous sites for 21 kilobases of protein-coding DNA is 100%. This implies a silent substitution rate of 0.7–0.8%/Myr—a rate remarkably similar to that observed in the nuclear genes of mammals, invertebrates, and flowering plants. Similarities in the substitution rates of eucaryotes and procaryotes are not limited to silent substitutions in protein-coding regions. The average substitution rate for 16S rRNA in eubacteria is about 1%/50 Myr, similar to the average rate for 18S rRNA in vertebrates and flowering plants. Likewise, we estimate a mean rate of roughly 1%/25 Myr for 5S rRNA in both eubacteria and eucaryotes.For a few protein-coding genes of these enteric bacteria, the extent of silent substitution since the divergence ofS. typhimurium andE. coli is much lower than 100%, owing to extreme bias in the usage of synonymous codons. Furthermore, in these bacteria, rates of amino acid replacement were about 20 times lower, on average, than the silent rate. By contranst, for the mammalian genes studied to date, the average replacement rate is only four to five times lower than the rate of silent substitution.
    30 schema:genre article
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N3d1bfbedb3564b43a714a134faae3013
    33 Na83112abbdfb4322a357e99acbb6ff70
    34 sg:journal.1016442
    35 schema:keywords DNA
    36 Myr
    37 RNAs
    38 acid replacements
    39 amino acid replacements
    40 andE.
    41 andEscherichia coli
    42 approach
    43 average rate
    44 average replacement rate
    45 average substitution rate
    46 bacteria
    47 bacterial evolution
    48 bacterial tree
    49 betweenS.
    50 bias
    51 branch points
    52 branches
    53 cellular genome
    54 chloroplasts
    55 codon
    56 coli
    57 contranst
    58 date
    59 divergence
    60 ecological events
    61 enteric bacteria
    62 enteric species
    63 eubacteria
    64 eucaryotes
    65 events
    66 evidence
    67 evolution
    68 extent
    69 extreme bias
    70 genealogical tree
    71 genes
    72 genome
    73 geological past
    74 habitats
    75 invertebrates
    76 kilobases
    77 mammalian genes
    78 mammals
    79 mean rate
    80 median extent
    81 mitochondria
    82 nuclear genes
    83 paper
    84 past
    85 place
    86 plants
    87 point
    88 procaryotes
    89 protein-coding DNA
    90 protein-coding genes
    91 protein-coding regions
    92 rRNA
    93 rate
    94 region
    95 relationship
    96 replacement
    97 replacement rate
    98 ribosomal RNAs
    99 scale
    100 silent rate
    101 silent substitution rate
    102 silent substitutions
    103 similarity
    104 sites
    105 species
    106 substitution
    107 substitution rates
    108 synonymous codons
    109 synonymous sites
    110 temporal scales
    111 time
    112 time of divergence
    113 trees
    114 usage
    115 vertebrates
    116 years
    117 schema:name Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes
    118 schema:pagination 74-86
    119 schema:productId N59270760f2e548579513886a4b42ecc3
    120 N8e403371e69d4176b545afdcd2d1d83f
    121 Nbef9b526d4b046e18afa622c89bf1e04
    122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026736092
    123 https://doi.org/10.1007/bf02111283
    124 schema:sdDatePublished 2022-10-01T06:28
    125 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    126 schema:sdPublisher Nf672f76d4bdb4050ba8f2dc9a34a8245
    127 schema:url https://doi.org/10.1007/bf02111283
    128 sgo:license sg:explorer/license/
    129 sgo:sdDataset articles
    130 rdf:type schema:ScholarlyArticle
    131 N168bb12b33784af0b37d7f2cc1cfa913 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Biological Evolution
    133 rdf:type schema:DefinedTerm
    134 N3a3eb6a8bb474c8fa5da72fb2a03f0f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Bacteria
    136 rdf:type schema:DefinedTerm
    137 N3d1bfbedb3564b43a714a134faae3013 schema:volumeNumber 26
    138 rdf:type schema:PublicationVolume
    139 N4b4eb266977d47c9bb4c83d6e116d88b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Models, Genetic
    141 rdf:type schema:DefinedTerm
    142 N59270760f2e548579513886a4b42ecc3 schema:name dimensions_id
    143 schema:value pub.1026736092
    144 rdf:type schema:PropertyValue
    145 N8268731de0d14575b7912c907253643c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name RNA, Ribosomal
    147 rdf:type schema:DefinedTerm
    148 N8e403371e69d4176b545afdcd2d1d83f schema:name pubmed_id
    149 schema:value 3125340
    150 rdf:type schema:PropertyValue
    151 N9ee1cf72695449be95c4cffea5eb52d9 rdf:first sg:person.0600333516.52
    152 rdf:rest Ndccb333a69294667a3c2e86f9f86f1ff
    153 Na83112abbdfb4322a357e99acbb6ff70 schema:issueNumber 1-2
    154 rdf:type schema:PublicationIssue
    155 Nbef9b526d4b046e18afa622c89bf1e04 schema:name doi
    156 schema:value 10.1007/bf02111283
    157 rdf:type schema:PropertyValue
    158 Nc5c1cbec88a8406b84e5414feee6e3e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Fossils
    160 rdf:type schema:DefinedTerm
    161 Nda27da27990941e2b25edaa879c5358e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Phylogeny
    163 rdf:type schema:DefinedTerm
    164 Ndccb333a69294667a3c2e86f9f86f1ff rdf:first sg:person.011447324772.79
    165 rdf:rest rdf:nil
    166 Nddb7f17431eb495b805e23baa93a7715 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Genetic Variation
    168 rdf:type schema:DefinedTerm
    169 Nec3d86b5279f4720b7b909dbeb0c61fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Genes, Bacterial
    171 rdf:type schema:DefinedTerm
    172 Nf672f76d4bdb4050ba8f2dc9a34a8245 schema:name Springer Nature - SN SciGraph project
    173 rdf:type schema:Organization
    174 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    175 schema:name Biological Sciences
    176 rdf:type schema:DefinedTerm
    177 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    178 schema:name Genetics
    179 rdf:type schema:DefinedTerm
    180 sg:grant.2378445 http://pending.schema.org/fundedItem sg:pub.10.1007/bf02111283
    181 rdf:type schema:MonetaryGrant
    182 sg:journal.1016442 schema:issn 0022-2844
    183 1432-1432
    184 schema:name Journal of Molecular Evolution
    185 schema:publisher Springer Nature
    186 rdf:type schema:Periodical
    187 sg:person.011447324772.79 schema:affiliation grid-institutes:grid.4305.2
    188 schema:familyName Wilson
    189 schema:givenName Allan C.
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011447324772.79
    191 rdf:type schema:Person
    192 sg:person.0600333516.52 schema:affiliation grid-institutes:grid.47840.3f
    193 schema:familyName Ochman
    194 schema:givenName Howard
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600333516.52
    196 rdf:type schema:Person
    197 sg:pub.10.1007/978-1-4615-6974-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089803019
    198 https://doi.org/10.1007/978-1-4615-6974-9_3
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/978-1-4684-4988-4_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089811828
    201 https://doi.org/10.1007/978-1-4684-4988-4_1
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/bf00491901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032802658
    204 https://doi.org/10.1007/bf00491901
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/bf01659392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035638159
    207 https://doi.org/10.1007/bf01659392
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/bf01734101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033529186
    210 https://doi.org/10.1007/bf01734101
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/bf02100622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013867179
    213 https://doi.org/10.1007/bf02100622
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/bf02102358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001492228
    216 https://doi.org/10.1007/bf02102358
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/bf02105801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007019589
    219 https://doi.org/10.1007/bf02105801
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/bf02105802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041320814
    222 https://doi.org/10.1007/bf02105802
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/265024a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048904238
    225 https://doi.org/10.1038/265024a0
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/309425a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008013691
    228 https://doi.org/10.1038/309425a0
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/319234a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040349240
    231 https://doi.org/10.1038/319234a0
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/320027a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029383273
    234 https://doi.org/10.1038/320027a0
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/newbio243199a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040485034
    237 https://doi.org/10.1038/newbio243199a0
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/scientificamerican0380-136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056512229
    240 https://doi.org/10.1038/scientificamerican0380-136
    241 rdf:type schema:CreativeWork
    242 grid-institutes:grid.4305.2 schema:alternateName Institute of Animal Genetics, University of Edinburgh, EH9 3JN, Edinburgh, Scotland UK
    243 schema:name Department of Biochemistry, University of California, 94720, Berkeley, California, USA
    244 Institute of Animal Genetics, University of Edinburgh, EH9 3JN, Edinburgh, Scotland UK
    245 rdf:type schema:Organization
    246 grid-institutes:grid.47840.3f schema:alternateName Department of Biochemistry, University of California, 94720, Berkeley, California, USA
    247 schema:name Department of Biochemistry, University of California, 94720, Berkeley, California, USA
    248 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...