Nonpersistence of breather families for the perturbed sine Gordon equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-11

AUTHORS

Jochen Denzler

ABSTRACT

We show that, up to one exception and as a consequence of first order perturbation theory only, it is impossible that a large portion of the well-known family of breather solutions to the sine Gordon equation could persist under any nontrivial perturbation of the form where δ is an analytic function in anarbitrarily small neighbourhood ofu=0. Improving known results, we analyze and overcome the particular difficulties that arise when one allows the domain of analyticity of δ to be small. The single exception is a one-dimensional linear space of perturbation functions under which the full family of breathers does persist up to first order in ε. More... »

PAGES

397-430

References to SciGraph publications

  • 1994. Nonpersistence of Breather Solutions under Perturbation of the Sine-Gordon Equation in SEMINAR ON DYNAMICAL SYSTEMS
  • 1991. Nonlinear waves and the KAM theorem: Nonlinear degeneracies in LARGE SCALE STRUCTURES IN NONLINEAR PHYSICS
  • 1992-12. An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1971-04. Theory and applications of the sine-gordon equation in LA RIVISTA DEL NUOVO CIMENTO (1978-1999)
  • 1985-09. Periodic nonlinear waves on a half-line in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02108081

    DOI

    http://dx.doi.org/10.1007/bf02108081

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013673099


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Mathematisches Institut, Ludwig-Maximilians-Universit\u00e4t, Theresienstr. 39, D-80333, M\u00fcnchen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Denzler", 
            "givenName": "Jochen", 
            "id": "sg:person.014454065225.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014454065225.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02820622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009675157", 
              "https://doi.org/10.1007/bf02820622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02096956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011481389", 
              "https://doi.org/10.1007/bf02096956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02096956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011481389", 
              "https://doi.org/10.1007/bf02096956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-54899-8_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013799668", 
              "https://doi.org/10.1007/3-540-54899-8_31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sapm1974534249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016718441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160461102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025537368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160461102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025537368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01240354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027581271", 
              "https://doi.org/10.1007/bf01240354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01240354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027581271", 
              "https://doi.org/10.1007/bf01240354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(89)90065-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033341704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(89)90065-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033341704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1035600588", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1035600588", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160440704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035727607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160440704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035727607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-247x(76)90201-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050959101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-7515-8_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051625123", 
              "https://doi.org/10.1007/978-3-0348-7515-8_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.522391", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058099411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.525509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058102528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.18.1652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060467199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.18.1652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060467199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.30.1262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060776953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.30.1262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060776953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.58.1158.2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060794681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.58.1158.2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060794681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.58.747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060795380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.58.747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060795380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/conm/081/986267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089206207"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-11", 
        "datePublishedReg": "1993-11-01", 
        "description": "We show that, up to one exception and as a consequence of first order perturbation theory only, it is impossible that a large portion of the well-known family of breather solutions to the sine Gordon equation could persist under any nontrivial perturbation of the form where \u03b4 is an analytic function in anarbitrarily small neighbourhood ofu=0. Improving known results, we analyze and overcome the particular difficulties that arise when one allows the domain of analyticity of \u03b4 to be small. The single exception is a one-dimensional linear space of perturbation functions under which the full family of breathers does persist up to first order in \u03b5.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02108081", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "158"
          }
        ], 
        "name": "Nonpersistence of breather families for the perturbed sine Gordon equation", 
        "pagination": "397-430", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "412292b0fdf05a67253525aa51b1a5f5555a17b74173719bdee02fa883731780"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02108081"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013673099"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02108081", 
          "https://app.dimensions.ai/details/publication/pub.1013673099"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118346_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF02108081"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02108081'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02108081'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02108081'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02108081'


     

    This table displays all metadata directly associated to this object as RDF triples.

    119 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02108081 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nd923e5260637474699d23969b86cf579
    4 schema:citation sg:pub.10.1007/3-540-54899-8_31
    5 sg:pub.10.1007/978-3-0348-7515-8_16
    6 sg:pub.10.1007/bf01240354
    7 sg:pub.10.1007/bf02096956
    8 sg:pub.10.1007/bf02820622
    9 https://app.dimensions.ai/details/publication/pub.1035600588
    10 https://doi.org/10.1002/cpa.3160440704
    11 https://doi.org/10.1002/cpa.3160461102
    12 https://doi.org/10.1002/sapm1974534249
    13 https://doi.org/10.1016/0022-247x(76)90201-8
    14 https://doi.org/10.1016/0167-2789(89)90065-1
    15 https://doi.org/10.1063/1.522391
    16 https://doi.org/10.1063/1.525509
    17 https://doi.org/10.1090/conm/081/986267
    18 https://doi.org/10.1103/physreva.18.1652
    19 https://doi.org/10.1103/physrevlett.30.1262
    20 https://doi.org/10.1103/physrevlett.58.1158.2
    21 https://doi.org/10.1103/physrevlett.58.747
    22 schema:datePublished 1993-11
    23 schema:datePublishedReg 1993-11-01
    24 schema:description We show that, up to one exception and as a consequence of first order perturbation theory only, it is impossible that a large portion of the well-known family of breather solutions to the sine Gordon equation could persist under any nontrivial perturbation of the form where δ is an analytic function in anarbitrarily small neighbourhood ofu=0. Improving known results, we analyze and overcome the particular difficulties that arise when one allows the domain of analyticity of δ to be small. The single exception is a one-dimensional linear space of perturbation functions under which the full family of breathers does persist up to first order in ε.
    25 schema:genre research_article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf Ncf15517a132246e9aeadf6cbe4de002c
    29 Need736c5e2ce4e258f881529f1de69d6
    30 sg:journal.1136216
    31 schema:name Nonpersistence of breather families for the perturbed sine Gordon equation
    32 schema:pagination 397-430
    33 schema:productId N04e0d447729143829e83d494f53eecef
    34 N1d951c0436c441139ebd6a64600ef9d6
    35 Nef67038681504359b105809af25d556a
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013673099
    37 https://doi.org/10.1007/bf02108081
    38 schema:sdDatePublished 2019-04-11T12:07
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher N58fde767dbce4846bc3f22cefee96124
    41 schema:url http://link.springer.com/10.1007/BF02108081
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N04e0d447729143829e83d494f53eecef schema:name dimensions_id
    46 schema:value pub.1013673099
    47 rdf:type schema:PropertyValue
    48 N1d951c0436c441139ebd6a64600ef9d6 schema:name doi
    49 schema:value 10.1007/bf02108081
    50 rdf:type schema:PropertyValue
    51 N58fde767dbce4846bc3f22cefee96124 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 Ncf15517a132246e9aeadf6cbe4de002c schema:issueNumber 2
    54 rdf:type schema:PublicationIssue
    55 Nd923e5260637474699d23969b86cf579 rdf:first sg:person.014454065225.20
    56 rdf:rest rdf:nil
    57 Need736c5e2ce4e258f881529f1de69d6 schema:volumeNumber 158
    58 rdf:type schema:PublicationVolume
    59 Nef67038681504359b105809af25d556a schema:name readcube_id
    60 schema:value 412292b0fdf05a67253525aa51b1a5f5555a17b74173719bdee02fa883731780
    61 rdf:type schema:PropertyValue
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Pure Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1136216 schema:issn 0010-3616
    69 1432-0916
    70 schema:name Communications in Mathematical Physics
    71 rdf:type schema:Periodical
    72 sg:person.014454065225.20 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    73 schema:familyName Denzler
    74 schema:givenName Jochen
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014454065225.20
    76 rdf:type schema:Person
    77 sg:pub.10.1007/3-540-54899-8_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013799668
    78 https://doi.org/10.1007/3-540-54899-8_31
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/978-3-0348-7515-8_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051625123
    81 https://doi.org/10.1007/978-3-0348-7515-8_16
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/bf01240354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027581271
    84 https://doi.org/10.1007/bf01240354
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/bf02096956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011481389
    87 https://doi.org/10.1007/bf02096956
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/bf02820622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009675157
    90 https://doi.org/10.1007/bf02820622
    91 rdf:type schema:CreativeWork
    92 https://app.dimensions.ai/details/publication/pub.1035600588 schema:CreativeWork
    93 https://doi.org/10.1002/cpa.3160440704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035727607
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1002/cpa.3160461102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025537368
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1002/sapm1974534249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016718441
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/0022-247x(76)90201-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050959101
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/0167-2789(89)90065-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033341704
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1063/1.522391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058099411
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1063/1.525509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058102528
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1090/conm/081/986267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089206207
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1103/physreva.18.1652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467199
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1103/physrevlett.30.1262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060776953
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1103/physrevlett.58.1158.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794681
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1103/physrevlett.58.747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795380
    116 rdf:type schema:CreativeWork
    117 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
    118 schema:name Mathematisches Institut, Ludwig-Maximilians-Universität, Theresienstr. 39, D-80333, München, Germany
    119 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...