Symplectic structures associated to Lie-Poisson groups View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1994-04

AUTHORS

A. Yu. Alekseev, A. Z. Malkin

ABSTRACT

The Lie-Poisson analogues of the cotangent bundle and coadjoint orbits of a Lie group are considered. For the natural Poisson brackets the symplectic leaves in these manifolds are classified, and the corresponding symplectic forms are described. Thus the construction of the Kirillov symplectic form is generalized for Lie-Poisson groups.

PAGES

147-173

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02105190

DOI

http://dx.doi.org/10.1007/bf02105190

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020742795


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratory of Theoretical and High Energy Physics", 
          "id": "https://www.grid.ac/institutes/grid.463942.e", 
          "name": [
            "Laboratoire de Physique Th\u00e9orique et Hautes \u00c9nergies, Paris, France", 
            "Institute of Theoretical Physics, Uppsala University, Box 803, S-75108, Uppsala, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alekseev", 
        "givenName": "A. Yu.", 
        "id": "sg:person.01265257627.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265257627.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Theoretical Physics, Uppsala University, Box 803, S-75108, Uppsala, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malkin", 
        "givenName": "A. Z.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/b978-0-12-400465-8.50019-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011541148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66243-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014390922", 
          "https://doi.org/10.1007/978-3-642-66243-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66243-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014390922", 
          "https://doi.org/10.1007/978-3-642-66243-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01083527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020607094", 
          "https://doi.org/10.1007/bf01083527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01083527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020607094", 
          "https://doi.org/10.1007/bf01083527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(89)90130-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022212793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(89)90130-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022212793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214437787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214444324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459764"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-04", 
    "datePublishedReg": "1994-04-01", 
    "description": "The Lie-Poisson analogues of the cotangent bundle and coadjoint orbits of a Lie group are considered. For the natural Poisson brackets the symplectic leaves in these manifolds are classified, and the corresponding symplectic forms are described. Thus the construction of the Kirillov symplectic form is generalized for Lie-Poisson groups.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02105190", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "162"
      }
    ], 
    "name": "Symplectic structures associated to Lie-Poisson groups", 
    "pagination": "147-173", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "62d58b865ad87ea3a14b6d5159105e651b53d2295ef3e5fc385852644e669d1c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02105190"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020742795"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02105190", 
      "https://app.dimensions.ai/details/publication/pub.1020742795"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02105190"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02105190'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02105190'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02105190'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02105190'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02105190 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N08d0105d242a49a3be7dd158a16744f3
4 schema:citation sg:pub.10.1007/978-3-642-66243-0
5 sg:pub.10.1007/bf01083527
6 https://doi.org/10.1016/0550-3213(89)90130-2
7 https://doi.org/10.1016/b978-0-12-400465-8.50019-5
8 https://doi.org/10.4310/jdg/1214437787
9 https://doi.org/10.4310/jdg/1214444324
10 schema:datePublished 1994-04
11 schema:datePublishedReg 1994-04-01
12 schema:description The Lie-Poisson analogues of the cotangent bundle and coadjoint orbits of a Lie group are considered. For the natural Poisson brackets the symplectic leaves in these manifolds are classified, and the corresponding symplectic forms are described. Thus the construction of the Kirillov symplectic form is generalized for Lie-Poisson groups.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N685cd0498e5349f2bc55d65b5d222397
17 Nb2268360e10d4da388016dfc2f66f6ff
18 sg:journal.1136216
19 schema:name Symplectic structures associated to Lie-Poisson groups
20 schema:pagination 147-173
21 schema:productId N48056f217ce14ad1a0330e7fe7ac89b2
22 N9e0f4e3844f0433d8939bebcdea363d7
23 Nc8b9f50fbd74493792062e2dae1c76f3
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020742795
25 https://doi.org/10.1007/bf02105190
26 schema:sdDatePublished 2019-04-11T12:39
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N70cb45c31d314d1b83baca91e2a722f7
29 schema:url http://link.springer.com/10.1007/BF02105190
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N08d0105d242a49a3be7dd158a16744f3 rdf:first sg:person.01265257627.68
34 rdf:rest Ne82b20383e6f4fce8a8d2667004f80f7
35 N48056f217ce14ad1a0330e7fe7ac89b2 schema:name dimensions_id
36 schema:value pub.1020742795
37 rdf:type schema:PropertyValue
38 N685cd0498e5349f2bc55d65b5d222397 schema:issueNumber 1
39 rdf:type schema:PublicationIssue
40 N70cb45c31d314d1b83baca91e2a722f7 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N7ddbc5e79cc54a1a810f3848b8653b9f schema:name Institute of Theoretical Physics, Uppsala University, Box 803, S-75108, Uppsala, Sweden
43 rdf:type schema:Organization
44 N9e0f4e3844f0433d8939bebcdea363d7 schema:name doi
45 schema:value 10.1007/bf02105190
46 rdf:type schema:PropertyValue
47 Nb2268360e10d4da388016dfc2f66f6ff schema:volumeNumber 162
48 rdf:type schema:PublicationVolume
49 Nc8b9f50fbd74493792062e2dae1c76f3 schema:name readcube_id
50 schema:value 62d58b865ad87ea3a14b6d5159105e651b53d2295ef3e5fc385852644e669d1c
51 rdf:type schema:PropertyValue
52 Ne82b20383e6f4fce8a8d2667004f80f7 rdf:first Nf8ea3e8065f44d25bdfd65ab12aa8751
53 rdf:rest rdf:nil
54 Nf8ea3e8065f44d25bdfd65ab12aa8751 schema:affiliation N7ddbc5e79cc54a1a810f3848b8653b9f
55 schema:familyName Malkin
56 schema:givenName A. Z.
57 rdf:type schema:Person
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136216 schema:issn 0010-3616
65 1432-0916
66 schema:name Communications in Mathematical Physics
67 rdf:type schema:Periodical
68 sg:person.01265257627.68 schema:affiliation https://www.grid.ac/institutes/grid.463942.e
69 schema:familyName Alekseev
70 schema:givenName A. Yu.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265257627.68
72 rdf:type schema:Person
73 sg:pub.10.1007/978-3-642-66243-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014390922
74 https://doi.org/10.1007/978-3-642-66243-0
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01083527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020607094
77 https://doi.org/10.1007/bf01083527
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/0550-3213(89)90130-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022212793
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/b978-0-12-400465-8.50019-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011541148
82 rdf:type schema:CreativeWork
83 https://doi.org/10.4310/jdg/1214437787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459449
84 rdf:type schema:CreativeWork
85 https://doi.org/10.4310/jdg/1214444324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459764
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.463942.e schema:alternateName Laboratory of Theoretical and High Energy Physics
88 schema:name Institute of Theoretical Physics, Uppsala University, Box 803, S-75108, Uppsala, Sweden
89 Laboratoire de Physique Théorique et Hautes Énergies, Paris, France
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...