Einstein metrics onS3,R3 andR4 bundles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-02

AUTHORS

G. W. Gibbons, D. N. Page, C. N. Pope

ABSTRACT

Starting from a 4n-dimensional quaternionic Kähler base space, we construct metrics of cohomogeneity one in (4n+3) dimensions whose level surfaces are theS2 bundle space of almost complex structures on the base manifold. We derive the conditions on the metric functions that follow from imposing the Einstein equation, and obtain solutions both for compact and non-compact (4n+3)-dimensional spaces. Included in the non-compact solutions are two Ricci-flat 7-dimensional metrics withG2 holonomy. We also discuss two other Ricci-flat solutions, one on theR4 bundle overS3 and the other on anR4 bundle overS4. These haveG2 and Spin(7) holonomy respectively. More... »

PAGES

529-553

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02104500

DOI

http://dx.doi.org/10.1007/bf02104500

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020861207


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, CB3 9EW, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gibbons", 
        "givenName": "G. W.", 
        "id": "sg:person.0761046650.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761046650.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Physics, The Pennsylvania State University, 16802, University Park, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Page", 
        "givenName": "D. N.", 
        "id": "sg:person.016316764733.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016316764733.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas A&M University", 
          "id": "https://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Center for Theoretical Physics, Department of Physics, Texas A&M University, 77843, College Station, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pope", 
        "givenName": "C. N.", 
        "id": "sg:person.07512552121.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512552121.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01208277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002184326", 
          "https://doi.org/10.1007/bf01208277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01208277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002184326", 
          "https://doi.org/10.1007/bf01208277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01393378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012832276", 
          "https://doi.org/10.1007/bf01393378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/5/2/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014115246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01456947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015289229", 
          "https://doi.org/10.1007/bf01456947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01456947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015289229", 
          "https://doi.org/10.1007/bf01456947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/1/4/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023041611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01197189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023506156", 
          "https://doi.org/10.1007/bf01197189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01197189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023506156", 
          "https://doi.org/10.1007/bf01197189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/3/2/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024560618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02784569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026179580", 
          "https://doi.org/10.1007/bf02784569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90073-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032197672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90073-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032197672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/4/2/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033032115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100055924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053931658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.1457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.1457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1307/mmj/1029000212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064975663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1971360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/bsmf.1464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083660403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/asens.1367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084407935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214430220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084458936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214432544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400883875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096910943"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-02", 
    "datePublishedReg": "1990-02-01", 
    "description": "Starting from a 4n-dimensional quaternionic K\u00e4hler base space, we construct metrics of cohomogeneity one in (4n+3) dimensions whose level surfaces are theS2 bundle space of almost complex structures on the base manifold. We derive the conditions on the metric functions that follow from imposing the Einstein equation, and obtain solutions both for compact and non-compact (4n+3)-dimensional spaces. Included in the non-compact solutions are two Ricci-flat 7-dimensional metrics withG2 holonomy. We also discuss two other Ricci-flat solutions, one on theR4 bundle overS3 and the other on anR4 bundle overS4. These haveG2 and Spin(7) holonomy respectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02104500", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "127"
      }
    ], 
    "name": "Einstein metrics onS3,R3 andR4 bundles", 
    "pagination": "529-553", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6365267508e381dad5b998596711fa0594379ac1103efe0ebbb6a424e11bed8f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02104500"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020861207"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02104500", 
      "https://app.dimensions.ai/details/publication/pub.1020861207"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118332_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02104500"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02104500'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02104500'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02104500'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02104500'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02104500 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N36d374fa364d427a9c44f283a10bdb70
4 schema:citation sg:pub.10.1007/bf01197189
5 sg:pub.10.1007/bf01208277
6 sg:pub.10.1007/bf01393378
7 sg:pub.10.1007/bf01456947
8 sg:pub.10.1007/bf02784569
9 https://doi.org/10.1016/0550-3213(78)90073-1
10 https://doi.org/10.1017/s0305004100055924
11 https://doi.org/10.1088/0264-9381/1/4/015
12 https://doi.org/10.1088/0264-9381/3/2/018
13 https://doi.org/10.1088/0264-9381/4/2/005
14 https://doi.org/10.1088/0264-9381/5/2/006
15 https://doi.org/10.1103/physrevlett.43.1457
16 https://doi.org/10.1103/physrevlett.50.294
17 https://doi.org/10.1307/mmj/1029000212
18 https://doi.org/10.1515/9781400883875
19 https://doi.org/10.2307/1969983
20 https://doi.org/10.2307/1971360
21 https://doi.org/10.24033/asens.1367
22 https://doi.org/10.24033/bsmf.1464
23 https://doi.org/10.4310/jdg/1214430220
24 https://doi.org/10.4310/jdg/1214432544
25 schema:datePublished 1990-02
26 schema:datePublishedReg 1990-02-01
27 schema:description Starting from a 4n-dimensional quaternionic Kähler base space, we construct metrics of cohomogeneity one in (4n+3) dimensions whose level surfaces are theS2 bundle space of almost complex structures on the base manifold. We derive the conditions on the metric functions that follow from imposing the Einstein equation, and obtain solutions both for compact and non-compact (4n+3)-dimensional spaces. Included in the non-compact solutions are two Ricci-flat 7-dimensional metrics withG2 holonomy. We also discuss two other Ricci-flat solutions, one on theR4 bundle overS3 and the other on anR4 bundle overS4. These haveG2 and Spin(7) holonomy respectively.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf Nc6b59416790c4ca2aa4b3892e94e9ab6
32 Nfd2d44772e954a309de0aaa421ad7ced
33 sg:journal.1136216
34 schema:name Einstein metrics onS3,R3 andR4 bundles
35 schema:pagination 529-553
36 schema:productId N0e8b8e43afc343e8b9ecd456f4dd873f
37 N48595ce88ce8464eb127867ca21da3b9
38 N82353020d7ce4616b5d048f1cfee63e5
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020861207
40 https://doi.org/10.1007/bf02104500
41 schema:sdDatePublished 2019-04-11T12:05
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N1c71d9be81dd4742b2a01e744d9bd4c3
44 schema:url http://link.springer.com/10.1007/BF02104500
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N0e8b8e43afc343e8b9ecd456f4dd873f schema:name readcube_id
49 schema:value 6365267508e381dad5b998596711fa0594379ac1103efe0ebbb6a424e11bed8f
50 rdf:type schema:PropertyValue
51 N1c71d9be81dd4742b2a01e744d9bd4c3 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N36d374fa364d427a9c44f283a10bdb70 rdf:first sg:person.0761046650.29
54 rdf:rest Ncf68827be96a4986853893b79acae58a
55 N48595ce88ce8464eb127867ca21da3b9 schema:name doi
56 schema:value 10.1007/bf02104500
57 rdf:type schema:PropertyValue
58 N5467cc50f4054f16b0268f67ca865f98 rdf:first sg:person.07512552121.35
59 rdf:rest rdf:nil
60 N82353020d7ce4616b5d048f1cfee63e5 schema:name dimensions_id
61 schema:value pub.1020861207
62 rdf:type schema:PropertyValue
63 Nc6b59416790c4ca2aa4b3892e94e9ab6 schema:volumeNumber 127
64 rdf:type schema:PublicationVolume
65 Ncf68827be96a4986853893b79acae58a rdf:first sg:person.016316764733.87
66 rdf:rest N5467cc50f4054f16b0268f67ca865f98
67 Nfd2d44772e954a309de0aaa421ad7ced schema:issueNumber 3
68 rdf:type schema:PublicationIssue
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:journal.1136216 schema:issn 0010-3616
76 1432-0916
77 schema:name Communications in Mathematical Physics
78 rdf:type schema:Periodical
79 sg:person.016316764733.87 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
80 schema:familyName Page
81 schema:givenName D. N.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016316764733.87
83 rdf:type schema:Person
84 sg:person.07512552121.35 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
85 schema:familyName Pope
86 schema:givenName C. N.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512552121.35
88 rdf:type schema:Person
89 sg:person.0761046650.29 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
90 schema:familyName Gibbons
91 schema:givenName G. W.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761046650.29
93 rdf:type schema:Person
94 sg:pub.10.1007/bf01197189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023506156
95 https://doi.org/10.1007/bf01197189
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01208277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002184326
98 https://doi.org/10.1007/bf01208277
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf01393378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012832276
101 https://doi.org/10.1007/bf01393378
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01456947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015289229
104 https://doi.org/10.1007/bf01456947
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02784569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026179580
107 https://doi.org/10.1007/bf02784569
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0550-3213(78)90073-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032197672
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1017/s0305004100055924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053931658
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1088/0264-9381/1/4/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023041611
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1088/0264-9381/3/2/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024560618
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1088/0264-9381/4/2/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033032115
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1088/0264-9381/5/2/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014115246
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevlett.43.1457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060784176
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevlett.50.294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788704
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1307/mmj/1029000212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064975663
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1515/9781400883875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096910943
128 rdf:type schema:CreativeWork
129 https://doi.org/10.2307/1969983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675333
130 rdf:type schema:CreativeWork
131 https://doi.org/10.2307/1971360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676637
132 rdf:type schema:CreativeWork
133 https://doi.org/10.24033/asens.1367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084407935
134 rdf:type schema:CreativeWork
135 https://doi.org/10.24033/bsmf.1464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083660403
136 rdf:type schema:CreativeWork
137 https://doi.org/10.4310/jdg/1214430220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084458936
138 rdf:type schema:CreativeWork
139 https://doi.org/10.4310/jdg/1214432544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459094
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.264756.4 schema:alternateName Texas A&M University
142 schema:name Center for Theoretical Physics, Department of Physics, Texas A&M University, 77843, College Station, TX, USA
143 rdf:type schema:Organization
144 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
145 schema:name Department of Physics, The Pennsylvania State University, 16802, University Park, PA, USA
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
148 schema:name Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, CB3 9EW, Cambridge, UK
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...