Ontology type: schema:ScholarlyArticle
1994-01
AUTHORSG. Ponce, R. Racke, T. C. Sideris, E. S. Titi
ABSTRACTWe prove the stability of mildly decaying global strong solutions to the Navier-Stokes equations in three space dimensions. Combined with previous results on the global existence of large solutions with various symmetries, this gives the first global existence theorem for large solutions with approximately symmetric initial data. The stability of unforced 2D flow under 3D perturbations is also obtained. More... »
PAGES329-341
http://scigraph.springernature.com/pub.10.1007/bf02102642
DOIhttp://dx.doi.org/10.1007/bf02102642
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1020574412
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of California, Santa Barbara",
"id": "https://www.grid.ac/institutes/grid.133342.4",
"name": [
"Department of Mathematics, University of California, 93106, Santa Barbara, CA, USA"
],
"type": "Organization"
},
"familyName": "Ponce",
"givenName": "G.",
"id": "sg:person.011310113454.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011310113454.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of California, Santa Barbara",
"id": "https://www.grid.ac/institutes/grid.133342.4",
"name": [
"Department of Mathematics, University of California, 93106, Santa Barbara, CA, USA"
],
"type": "Organization"
},
"familyName": "Racke",
"givenName": "R.",
"id": "sg:person.014147163314.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014147163314.85"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of California, Santa Barbara",
"id": "https://www.grid.ac/institutes/grid.133342.4",
"name": [
"Department of Mathematics, University of California, 93106, Santa Barbara, CA, USA"
],
"type": "Organization"
},
"familyName": "Sideris",
"givenName": "T. C.",
"id": "sg:person.0604472010.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604472010.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cornell University",
"id": "https://www.grid.ac/institutes/grid.5386.8",
"name": [
"Department of Mathematics, University of California, 92717, Irvine, CA, USA",
"Center for Applied Mathematics, Cornell University, 14853, Ithaca, NY, USA"
],
"type": "Organization"
},
"familyName": "Titi",
"givenName": "E. S.",
"id": "sg:person.0774550114.65",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774550114.65"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01162027",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003495131",
"https://doi.org/10.1007/bf01162027"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01162027",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003495131",
"https://doi.org/10.1007/bf01162027"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01174182",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005099440",
"https://doi.org/10.1007/bf01174182"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01174182",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005099440",
"https://doi.org/10.1007/bf01174182"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0086059",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006691685",
"https://doi.org/10.1007/bfb0086059"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-663-13911-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014374249",
"https://doi.org/10.1007/978-3-663-13911-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-663-13911-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014374249",
"https://doi.org/10.1007/978-3-663-13911-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00381234",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015352543",
"https://doi.org/10.1007/bf00381234"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00381234",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015352543",
"https://doi.org/10.1007/bf00381234"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/03605308608820443",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021355436"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02547354",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026181143",
"https://doi.org/10.1007/bf02547354"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02410664",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027860837",
"https://doi.org/10.1007/bf02410664"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02410664",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027860837",
"https://doi.org/10.1007/bf02410664"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mana.3210040121",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036595171"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0021-8928(68)90147-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044526039"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0021-8928(68)90147-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044526039"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01163510",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044979899",
"https://doi.org/10.1007/bf01163510"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01163510",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044979899",
"https://doi.org/10.1007/bf01163510"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.858422",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058111627"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.67.3511",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060803729"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.67.3511",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060803729"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/pspum/045.1/843578",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1089194013"
],
"type": "CreativeWork"
}
],
"datePublished": "1994-01",
"datePublishedReg": "1994-01-01",
"description": "We prove the stability of mildly decaying global strong solutions to the Navier-Stokes equations in three space dimensions. Combined with previous results on the global existence of large solutions with various symmetries, this gives the first global existence theorem for large solutions with approximately symmetric initial data. The stability of unforced 2D flow under 3D perturbations is also obtained.",
"genre": "research_article",
"id": "sg:pub.10.1007/bf02102642",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136216",
"issn": [
"0010-3616",
"1432-0916"
],
"name": "Communications in Mathematical Physics",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "159"
}
],
"name": "Global stability of large solutions to the 3D Navier-Stokes equations",
"pagination": "329-341",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"6208c4163fdbd060e44e337dc92eaff45beda05fe23f95963890d3f60609e51a"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf02102642"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1020574412"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf02102642",
"https://app.dimensions.ai/details/publication/pub.1020574412"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:06",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118339_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/BF02102642"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02102642'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02102642'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02102642'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02102642'
This table displays all metadata directly associated to this object as RDF triples.
136 TRIPLES
21 PREDICATES
41 URIs
19 LITERALS
7 BLANK NODES