Global stability of large solutions to the 3D Navier-Stokes equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-01

AUTHORS

G. Ponce, R. Racke, T. C. Sideris, E. S. Titi

ABSTRACT

We prove the stability of mildly decaying global strong solutions to the Navier-Stokes equations in three space dimensions. Combined with previous results on the global existence of large solutions with various symmetries, this gives the first global existence theorem for large solutions with approximately symmetric initial data. The stability of unforced 2D flow under 3D perturbations is also obtained. More... »

PAGES

329-341

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02102642

DOI

http://dx.doi.org/10.1007/bf02102642

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020574412


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Mathematics, University of California, 93106, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ponce", 
        "givenName": "G.", 
        "id": "sg:person.011310113454.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011310113454.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Mathematics, University of California, 93106, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Racke", 
        "givenName": "R.", 
        "id": "sg:person.014147163314.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014147163314.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Mathematics, University of California, 93106, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sideris", 
        "givenName": "T. C.", 
        "id": "sg:person.0604472010.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604472010.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Mathematics, University of California, 92717, Irvine, CA, USA", 
            "Center for Applied Mathematics, Cornell University, 14853, Ithaca, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Titi", 
        "givenName": "E. S.", 
        "id": "sg:person.0774550114.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774550114.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01162027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003495131", 
          "https://doi.org/10.1007/bf01162027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01162027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003495131", 
          "https://doi.org/10.1007/bf01162027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01174182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005099440", 
          "https://doi.org/10.1007/bf01174182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01174182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005099440", 
          "https://doi.org/10.1007/bf01174182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0086059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006691685", 
          "https://doi.org/10.1007/bfb0086059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-663-13911-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014374249", 
          "https://doi.org/10.1007/978-3-663-13911-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-663-13911-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014374249", 
          "https://doi.org/10.1007/978-3-663-13911-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00381234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015352543", 
          "https://doi.org/10.1007/bf00381234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00381234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015352543", 
          "https://doi.org/10.1007/bf00381234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605308608820443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021355436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02547354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026181143", 
          "https://doi.org/10.1007/bf02547354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02410664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027860837", 
          "https://doi.org/10.1007/bf02410664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02410664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027860837", 
          "https://doi.org/10.1007/bf02410664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.3210040121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036595171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8928(68)90147-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044526039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8928(68)90147-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044526039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01163510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044979899", 
          "https://doi.org/10.1007/bf01163510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01163510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044979899", 
          "https://doi.org/10.1007/bf01163510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.858422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058111627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.3511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.3511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/pspum/045.1/843578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089194013"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-01", 
    "datePublishedReg": "1994-01-01", 
    "description": "We prove the stability of mildly decaying global strong solutions to the Navier-Stokes equations in three space dimensions. Combined with previous results on the global existence of large solutions with various symmetries, this gives the first global existence theorem for large solutions with approximately symmetric initial data. The stability of unforced 2D flow under 3D perturbations is also obtained.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02102642", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "159"
      }
    ], 
    "name": "Global stability of large solutions to the 3D Navier-Stokes equations", 
    "pagination": "329-341", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6208c4163fdbd060e44e337dc92eaff45beda05fe23f95963890d3f60609e51a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02102642"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020574412"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02102642", 
      "https://app.dimensions.ai/details/publication/pub.1020574412"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118339_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02102642"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02102642'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02102642'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02102642'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02102642'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02102642 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N60abd4bd37494b30871098d2cdf4985e
4 schema:citation sg:pub.10.1007/978-3-663-13911-9
5 sg:pub.10.1007/bf00381234
6 sg:pub.10.1007/bf01162027
7 sg:pub.10.1007/bf01163510
8 sg:pub.10.1007/bf01174182
9 sg:pub.10.1007/bf02410664
10 sg:pub.10.1007/bf02547354
11 sg:pub.10.1007/bfb0086059
12 https://doi.org/10.1002/mana.3210040121
13 https://doi.org/10.1016/0021-8928(68)90147-0
14 https://doi.org/10.1063/1.858422
15 https://doi.org/10.1080/03605308608820443
16 https://doi.org/10.1090/pspum/045.1/843578
17 https://doi.org/10.1103/physrevlett.67.3511
18 schema:datePublished 1994-01
19 schema:datePublishedReg 1994-01-01
20 schema:description We prove the stability of mildly decaying global strong solutions to the Navier-Stokes equations in three space dimensions. Combined with previous results on the global existence of large solutions with various symmetries, this gives the first global existence theorem for large solutions with approximately symmetric initial data. The stability of unforced 2D flow under 3D perturbations is also obtained.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N8d415fe1183841a3a5d5f4283b35a6b4
25 Nbbda5409e541451385b292f619cb5b8a
26 sg:journal.1136216
27 schema:name Global stability of large solutions to the 3D Navier-Stokes equations
28 schema:pagination 329-341
29 schema:productId N02047f8092904eef949304fbbab5708a
30 Nccfd28ed7ad94530b0e63996ebeaf1b6
31 Nef82358e3b354a48b862da0afd65e826
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020574412
33 https://doi.org/10.1007/bf02102642
34 schema:sdDatePublished 2019-04-11T12:06
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N06843b3eae344e6496858138aa8f61db
37 schema:url http://link.springer.com/10.1007/BF02102642
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N0081890e746347e6984c7bd4da486a24 rdf:first sg:person.014147163314.85
42 rdf:rest Nce9b3db3565a4caa8a577e601410ab47
43 N02047f8092904eef949304fbbab5708a schema:name readcube_id
44 schema:value 6208c4163fdbd060e44e337dc92eaff45beda05fe23f95963890d3f60609e51a
45 rdf:type schema:PropertyValue
46 N06843b3eae344e6496858138aa8f61db schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N60abd4bd37494b30871098d2cdf4985e rdf:first sg:person.011310113454.49
49 rdf:rest N0081890e746347e6984c7bd4da486a24
50 N8d415fe1183841a3a5d5f4283b35a6b4 schema:volumeNumber 159
51 rdf:type schema:PublicationVolume
52 Nbbda5409e541451385b292f619cb5b8a schema:issueNumber 2
53 rdf:type schema:PublicationIssue
54 Nccfd28ed7ad94530b0e63996ebeaf1b6 schema:name doi
55 schema:value 10.1007/bf02102642
56 rdf:type schema:PropertyValue
57 Nce9b3db3565a4caa8a577e601410ab47 rdf:first sg:person.0604472010.05
58 rdf:rest Ndd2be47d32d544da992c080653da97ef
59 Ndd2be47d32d544da992c080653da97ef rdf:first sg:person.0774550114.65
60 rdf:rest rdf:nil
61 Nef82358e3b354a48b862da0afd65e826 schema:name dimensions_id
62 schema:value pub.1020574412
63 rdf:type schema:PropertyValue
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
68 schema:name Pure Mathematics
69 rdf:type schema:DefinedTerm
70 sg:journal.1136216 schema:issn 0010-3616
71 1432-0916
72 schema:name Communications in Mathematical Physics
73 rdf:type schema:Periodical
74 sg:person.011310113454.49 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
75 schema:familyName Ponce
76 schema:givenName G.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011310113454.49
78 rdf:type schema:Person
79 sg:person.014147163314.85 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
80 schema:familyName Racke
81 schema:givenName R.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014147163314.85
83 rdf:type schema:Person
84 sg:person.0604472010.05 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
85 schema:familyName Sideris
86 schema:givenName T. C.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604472010.05
88 rdf:type schema:Person
89 sg:person.0774550114.65 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
90 schema:familyName Titi
91 schema:givenName E. S.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774550114.65
93 rdf:type schema:Person
94 sg:pub.10.1007/978-3-663-13911-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014374249
95 https://doi.org/10.1007/978-3-663-13911-9
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf00381234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015352543
98 https://doi.org/10.1007/bf00381234
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf01162027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003495131
101 https://doi.org/10.1007/bf01162027
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01163510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044979899
104 https://doi.org/10.1007/bf01163510
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf01174182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005099440
107 https://doi.org/10.1007/bf01174182
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02410664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027860837
110 https://doi.org/10.1007/bf02410664
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf02547354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026181143
113 https://doi.org/10.1007/bf02547354
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bfb0086059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006691685
116 https://doi.org/10.1007/bfb0086059
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/mana.3210040121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036595171
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0021-8928(68)90147-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044526039
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1063/1.858422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058111627
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1080/03605308608820443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021355436
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1090/pspum/045.1/843578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089194013
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevlett.67.3511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803729
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
131 schema:name Department of Mathematics, University of California, 93106, Santa Barbara, CA, USA
132 rdf:type schema:Organization
133 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
134 schema:name Center for Applied Mathematics, Cornell University, 14853, Ithaca, NY, USA
135 Department of Mathematics, University of California, 92717, Irvine, CA, USA
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...