New Jacobi-like identities for ZK parafermion characters View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1993-06

AUTHORS

Philip C. Argyres, Keith R. Dienes, S. -H. Henry Tye

ABSTRACT

We state and prove various new identities involving theZK parafermion characters (or level-K string functions)cnl for the casesK=4,K=8, andK=16. These identities fall into three classes: identities in the first class are generalizations of the famous Jacobi ϑ-function identity (which is theK=2 special case), identities in another class relate the levelK>2 characters to the Dedekind η-function, and identities in a third class relate theK>2 characters to the Jacobi ϑ-functions. These identities play a crucial role in the interpretation of fractional superstring spectra by indicating spacetime supersymmetry and aiding in the identification of the spacetime spin and statistics of fractional superstring states. More... »

PAGES

471-508

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02102105

DOI

http://dx.doi.org/10.1007/bf02102105

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019856975


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Newman Laboratory of Nuclear Studies, Cornell University, 14853-5001, Ithaca, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Argyres", 
        "givenName": "Philip C.", 
        "id": "sg:person.016555350257.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016555350257.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "McGill University", 
          "id": "https://www.grid.ac/institutes/grid.14709.3b", 
          "name": [
            "Dept. of Physics, McGill University, E. Rutherford Building, 3600 University St., H3A-2T8, Montr\u00e9al, P.Q., Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dienes", 
        "givenName": "Keith R.", 
        "id": "sg:person.012565667645.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012565667645.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Newman Laboratory of Nuclear Studies, Cornell University, 14853-5001, Ithaca, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henry Tye", 
        "givenName": "S. -H.", 
        "id": "sg:person.015612700531.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015612700531.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0550-3213(91)90048-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001883160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(91)90048-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001883160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(88)90148-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003300260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400881666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004465072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.3339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005661480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.3339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005661480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0255-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011141819", 
          "https://doi.org/10.1007/978-1-4684-0255-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0255-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011141819", 
          "https://doi.org/10.1007/978-1-4684-0255-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(85)90247-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018253253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(85)90247-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018253253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8708(80)90052-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024909748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90374-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027639491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90374-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027639491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(92)90127-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030202800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(92)90127-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030202800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(87)90348-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046476579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(87)90348-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046476579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(90)90441-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046915724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(90)90441-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046915724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(77)90206-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048143111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(77)90206-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048143111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.36.1122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060780025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.36.1122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060780025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217751x91001210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062929223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511626234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098791356"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-06", 
    "datePublishedReg": "1993-06-01", 
    "description": "We state and prove various new identities involving theZK parafermion characters (or level-K string functions)cnl for the casesK=4,K=8, andK=16. These identities fall into three classes: identities in the first class are generalizations of the famous Jacobi \u03d1-function identity (which is theK=2 special case), identities in another class relate the levelK>2 characters to the Dedekind \u03b7-function, and identities in a third class relate theK>2 characters to the Jacobi \u03d1-functions. These identities play a crucial role in the interpretation of fractional superstring spectra by indicating spacetime supersymmetry and aiding in the identification of the spacetime spin and statistics of fractional superstring states.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02102105", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "154"
      }
    ], 
    "name": "New Jacobi-like identities for ZK parafermion characters", 
    "pagination": "471-508", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e9bfb680445532f69484bc2fda59e79cd9437ad428fec9a759fef49585eed30"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02102105"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019856975"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02102105", 
      "https://app.dimensions.ai/details/publication/pub.1019856975"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87112_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02102105"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02102105'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02102105'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02102105'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02102105'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02102105 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbc851321559c4596835788f83633a3f1
4 schema:citation sg:pub.10.1007/978-1-4684-0255-1
5 https://doi.org/10.1016/0001-8708(80)90052-3
6 https://doi.org/10.1016/0370-2693(85)90247-3
7 https://doi.org/10.1016/0370-2693(88)90148-7
8 https://doi.org/10.1016/0550-3213(77)90206-1
9 https://doi.org/10.1016/0550-3213(84)90374-2
10 https://doi.org/10.1016/0550-3213(87)90348-8
11 https://doi.org/10.1016/0550-3213(90)90441-f
12 https://doi.org/10.1016/0550-3213(91)90048-3
13 https://doi.org/10.1016/0550-3213(92)90127-w
14 https://doi.org/10.1017/cbo9780511626234
15 https://doi.org/10.1103/physrevlett.36.1122
16 https://doi.org/10.1103/physrevlett.67.3339
17 https://doi.org/10.1142/s0217751x91001210
18 https://doi.org/10.1515/9781400881666
19 schema:datePublished 1993-06
20 schema:datePublishedReg 1993-06-01
21 schema:description We state and prove various new identities involving theZK parafermion characters (or level-K string functions)cnl for the casesK=4,K=8, andK=16. These identities fall into three classes: identities in the first class are generalizations of the famous Jacobi ϑ-function identity (which is theK=2 special case), identities in another class relate the levelK>2 characters to the Dedekind η-function, and identities in a third class relate theK>2 characters to the Jacobi ϑ-functions. These identities play a crucial role in the interpretation of fractional superstring spectra by indicating spacetime supersymmetry and aiding in the identification of the spacetime spin and statistics of fractional superstring states.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N577302610fc14287a2ade345b4cab342
26 N8246f602adba4ef89b050fc82b856a48
27 sg:journal.1136216
28 schema:name New Jacobi-like identities for ZK parafermion characters
29 schema:pagination 471-508
30 schema:productId N3c483f8370334b59a5b16f0b4e74e669
31 N91ca9befee2e4b5fa56734e153e058bb
32 Nf7f13cf919b24d8cb4ae83cdfe0655e5
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019856975
34 https://doi.org/10.1007/bf02102105
35 schema:sdDatePublished 2019-04-11T12:26
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nc120691c5b1347529985d5db05e17a9a
38 schema:url http://link.springer.com/10.1007/BF02102105
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N20020656113749d8b340fddae6539744 rdf:first sg:person.012565667645.76
43 rdf:rest N974e6cd170254dbf8f05f897b464131a
44 N3c483f8370334b59a5b16f0b4e74e669 schema:name dimensions_id
45 schema:value pub.1019856975
46 rdf:type schema:PropertyValue
47 N577302610fc14287a2ade345b4cab342 schema:volumeNumber 154
48 rdf:type schema:PublicationVolume
49 N8246f602adba4ef89b050fc82b856a48 schema:issueNumber 3
50 rdf:type schema:PublicationIssue
51 N91ca9befee2e4b5fa56734e153e058bb schema:name readcube_id
52 schema:value 5e9bfb680445532f69484bc2fda59e79cd9437ad428fec9a759fef49585eed30
53 rdf:type schema:PropertyValue
54 N974e6cd170254dbf8f05f897b464131a rdf:first sg:person.015612700531.40
55 rdf:rest rdf:nil
56 Nbc851321559c4596835788f83633a3f1 rdf:first sg:person.016555350257.38
57 rdf:rest N20020656113749d8b340fddae6539744
58 Nc120691c5b1347529985d5db05e17a9a schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nf7f13cf919b24d8cb4ae83cdfe0655e5 schema:name doi
61 schema:value 10.1007/bf02102105
62 rdf:type schema:PropertyValue
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
67 schema:name Pure Mathematics
68 rdf:type schema:DefinedTerm
69 sg:journal.1136216 schema:issn 0010-3616
70 1432-0916
71 schema:name Communications in Mathematical Physics
72 rdf:type schema:Periodical
73 sg:person.012565667645.76 schema:affiliation https://www.grid.ac/institutes/grid.14709.3b
74 schema:familyName Dienes
75 schema:givenName Keith R.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012565667645.76
77 rdf:type schema:Person
78 sg:person.015612700531.40 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
79 schema:familyName Henry Tye
80 schema:givenName S. -H.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015612700531.40
82 rdf:type schema:Person
83 sg:person.016555350257.38 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
84 schema:familyName Argyres
85 schema:givenName Philip C.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016555350257.38
87 rdf:type schema:Person
88 sg:pub.10.1007/978-1-4684-0255-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011141819
89 https://doi.org/10.1007/978-1-4684-0255-1
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0001-8708(80)90052-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024909748
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0370-2693(85)90247-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018253253
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0370-2693(88)90148-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003300260
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0550-3213(77)90206-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048143111
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0550-3213(84)90374-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027639491
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0550-3213(87)90348-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046476579
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0550-3213(90)90441-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1046915724
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0550-3213(91)90048-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001883160
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0550-3213(92)90127-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1030202800
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1017/cbo9780511626234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098791356
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevlett.36.1122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060780025
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevlett.67.3339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005661480
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1142/s0217751x91001210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062929223
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1515/9781400881666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004465072
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.14709.3b schema:alternateName McGill University
120 schema:name Dept. of Physics, McGill University, E. Rutherford Building, 3600 University St., H3A-2T8, Montréal, P.Q., Canada
121 rdf:type schema:Organization
122 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
123 schema:name Newman Laboratory of Nuclear Studies, Cornell University, 14853-5001, Ithaca, NY, USA
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...