Selection rules for topology change View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1992-08

AUTHORS

G. W. Gibbons, S. W. Hawking

ABSTRACT

It is shown that there are restrictions on the possible changes of topology of space sections of the universe if this topology change takes place in a compact region which has a Lorentzian metric and spinor structure. In particular, it is impossible to create a single wormhole or attach a single handle to a spacetime but it is kinematically possible to create such wormholes in pairs. Another way of saying this is that there is a ℤ2 invariant for a closed oriented 3-manifold Σ which determines whether Σ can be the spacelike boundary of a compact manifoldM which admits a Lorentzian metric and a spinor structure. We evaluate this invariant in terms of the homology groups of Σ and find that it is the mod2 Kervaire semi-characteristic. More... »

PAGES

345-352

References to SciGraph publications

  • 1972-03. Lorentz cobordism in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1975-10. Lorentzian characteristic classes in GENERAL RELATIVITY AND GRAVITATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02100864

    DOI

    http://dx.doi.org/10.1007/bf02100864

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019571861


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "D.A.M.T.P., Silver Street, CB3 9EW, Cambridge, UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "D.A.M.T.P., Silver Street, CB3 9EW, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gibbons", 
            "givenName": "G. W.", 
            "id": "sg:person.0761046650.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761046650.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "D.A.M.T.P., Silver Street, CB3 9EW, Cambridge, UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "D.A.M.T.P., Silver Street, CB3 9EW, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hawking", 
            "givenName": "S. W.", 
            "id": "sg:person.012212614165.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00762451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005925903", 
              "https://doi.org/10.1007/bf00762451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01877546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046062554", 
              "https://doi.org/10.1007/bf01877546"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-08", 
        "datePublishedReg": "1992-08-01", 
        "description": "It is shown that there are restrictions on the possible changes of topology of space sections of the universe if this topology change takes place in a compact region which has a Lorentzian metric and spinor structure. In particular, it is impossible to create a single wormhole or attach a single handle to a spacetime but it is kinematically possible to create such wormholes in pairs. Another way of saying this is that there is a \u21242 invariant for a closed oriented 3-manifold \u03a3 which determines whether \u03a3 can be the spacelike boundary of a compact manifoldM which admits a Lorentzian metric and a spinor structure. We evaluate this invariant in terms of the homology groups of \u03a3 and find that it is the mod2 Kervaire semi-characteristic.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02100864", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "148"
          }
        ], 
        "keywords": [
          "spinor structure", 
          "Lorentzian metric", 
          "topology changes", 
          "spacelike boundary", 
          "such wormholes", 
          "single wormhole", 
          "homology groups", 
          "space sections", 
          "compact region", 
          "invariants", 
          "compact manifoldM", 
          "selection rules", 
          "single handle", 
          "wormholes", 
          "spacetime", 
          "Kervaire", 
          "manifoldM", 
          "universe", 
          "topology", 
          "metrics", 
          "structure", 
          "boundaries", 
          "terms", 
          "rules", 
          "restriction", 
          "pairs", 
          "way", 
          "sections", 
          "possible changes", 
          "handle", 
          "region", 
          "place", 
          "changes", 
          "group"
        ], 
        "name": "Selection rules for topology change", 
        "pagination": "345-352", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019571861"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02100864"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02100864", 
          "https://app.dimensions.ai/details/publication/pub.1019571861"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_257.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02100864"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02100864'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02100864'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02100864'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02100864'


     

    This table displays all metadata directly associated to this object as RDF triples.

    106 TRIPLES      21 PREDICATES      61 URIs      51 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02100864 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N9e3acb5bec154132b2853183172e8123
    4 schema:citation sg:pub.10.1007/bf00762451
    5 sg:pub.10.1007/bf01877546
    6 schema:datePublished 1992-08
    7 schema:datePublishedReg 1992-08-01
    8 schema:description It is shown that there are restrictions on the possible changes of topology of space sections of the universe if this topology change takes place in a compact region which has a Lorentzian metric and spinor structure. In particular, it is impossible to create a single wormhole or attach a single handle to a spacetime but it is kinematically possible to create such wormholes in pairs. Another way of saying this is that there is a ℤ2 invariant for a closed oriented 3-manifold Σ which determines whether Σ can be the spacelike boundary of a compact manifoldM which admits a Lorentzian metric and a spinor structure. We evaluate this invariant in terms of the homology groups of Σ and find that it is the mod2 Kervaire semi-characteristic.
    9 schema:genre article
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N30b9587710444f65aa3b79c7e37256bc
    12 N5fe6162764194aeaa6da90ea147f0bcf
    13 sg:journal.1136216
    14 schema:keywords Kervaire
    15 Lorentzian metric
    16 boundaries
    17 changes
    18 compact manifoldM
    19 compact region
    20 group
    21 handle
    22 homology groups
    23 invariants
    24 manifoldM
    25 metrics
    26 pairs
    27 place
    28 possible changes
    29 region
    30 restriction
    31 rules
    32 sections
    33 selection rules
    34 single handle
    35 single wormhole
    36 space sections
    37 spacelike boundary
    38 spacetime
    39 spinor structure
    40 structure
    41 such wormholes
    42 terms
    43 topology
    44 topology changes
    45 universe
    46 way
    47 wormholes
    48 schema:name Selection rules for topology change
    49 schema:pagination 345-352
    50 schema:productId Nad045a9f706a466cb55acb311405a6ab
    51 Nee2a8c88962e4446ab667588b9272e66
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019571861
    53 https://doi.org/10.1007/bf02100864
    54 schema:sdDatePublished 2022-12-01T06:20
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher Nd19541b65184485da550a6d7e36fac27
    57 schema:url https://doi.org/10.1007/bf02100864
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N30b9587710444f65aa3b79c7e37256bc schema:issueNumber 2
    62 rdf:type schema:PublicationIssue
    63 N5fe6162764194aeaa6da90ea147f0bcf schema:volumeNumber 148
    64 rdf:type schema:PublicationVolume
    65 N9e3acb5bec154132b2853183172e8123 rdf:first sg:person.0761046650.29
    66 rdf:rest Nbeaafe621c3846679f2bc933601a053a
    67 Nad045a9f706a466cb55acb311405a6ab schema:name dimensions_id
    68 schema:value pub.1019571861
    69 rdf:type schema:PropertyValue
    70 Nbeaafe621c3846679f2bc933601a053a rdf:first sg:person.012212614165.22
    71 rdf:rest rdf:nil
    72 Nd19541b65184485da550a6d7e36fac27 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 Nee2a8c88962e4446ab667588b9272e66 schema:name doi
    75 schema:value 10.1007/bf02100864
    76 rdf:type schema:PropertyValue
    77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Mathematical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Pure Mathematics
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1136216 schema:issn 0010-3616
    84 1432-0916
    85 schema:name Communications in Mathematical Physics
    86 schema:publisher Springer Nature
    87 rdf:type schema:Periodical
    88 sg:person.012212614165.22 schema:affiliation grid-institutes:None
    89 schema:familyName Hawking
    90 schema:givenName S. W.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22
    92 rdf:type schema:Person
    93 sg:person.0761046650.29 schema:affiliation grid-institutes:None
    94 schema:familyName Gibbons
    95 schema:givenName G. W.
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761046650.29
    97 rdf:type schema:Person
    98 sg:pub.10.1007/bf00762451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005925903
    99 https://doi.org/10.1007/bf00762451
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bf01877546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046062554
    102 https://doi.org/10.1007/bf01877546
    103 rdf:type schema:CreativeWork
    104 grid-institutes:None schema:alternateName D.A.M.T.P., Silver Street, CB3 9EW, Cambridge, UK
    105 schema:name D.A.M.T.P., Silver Street, CB3 9EW, Cambridge, UK
    106 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...