Decay rates of solutions of an anisotropic inhomogeneousn-dimensional viscoelastic equation with polynomially decaying kernels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-04

AUTHORS

Jaime E. Muñoz Rivera, Eugenio Cabanillas Lapa

ABSTRACT

We consider the anisotropic and inhomogeneous viscoelastic equation and we prove that the first and second order energy decay polynomially as time goes to infinity when the relaxation function also decays polynomially to zero. That is, if the kernelGijkl satisfies then the first and second order energy decay as withq=2m−1.

PAGES

583-602

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02099539

DOI

http://dx.doi.org/10.1007/bf02099539

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000355683


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Federal University of Rio de Janeiro", 
          "id": "https://www.grid.ac/institutes/grid.8536.8", 
          "name": [
            "Department of Research and Development, National Laboratory for Scientific Computation, Rua Lauro M\u00fcller 455, Botafogo Cep. 22290, Rio de Janeiro, RJ, Brasil", 
            "IM, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brasil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mu\u00f1oz Rivera", 
        "givenName": "Jaime E.", 
        "id": "sg:person.016005375553.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016005375553.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of San Marcos", 
          "id": "https://www.grid.ac/institutes/grid.10800.39", 
          "name": [
            "Universidad Nacional Mayor de San Marcos, Av. Venezuela s/n, Lima, Peru"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lapa", 
        "givenName": "Eugenio Cabanillas", 
        "id": "sg:person.013704547320.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013704547320.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00251609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024392642", 
          "https://doi.org/10.1007/bf00251609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024392642", 
          "https://doi.org/10.1007/bf00251609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(85)90147-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030265788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(77)90005-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035578545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605307908820094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039591322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(70)90101-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047523487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/1079915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059346838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/478939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059348713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0516007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062847673"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-04", 
    "datePublishedReg": "1996-04-01", 
    "description": "We consider the anisotropic and inhomogeneous viscoelastic equation and we prove that the first and second order energy decay polynomially as time goes to infinity when the relaxation function also decays polynomially to zero. That is, if the kernelGijkl satisfies then the first and second order energy decay as withq=2m\u22121.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02099539", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "177"
      }
    ], 
    "name": "Decay rates of solutions of an anisotropic inhomogeneousn-dimensional viscoelastic equation with polynomially decaying kernels", 
    "pagination": "583-602", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "01b18ae57eeedeab7a50b176676865d3f210e2d16f43a0ddc6598a28d3de1a19"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02099539"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000355683"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02099539", 
      "https://app.dimensions.ai/details/publication/pub.1000355683"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70064_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02099539"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02099539'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02099539'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02099539'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02099539'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02099539 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N14ee2dfdeeea4a599b6053829b407db5
4 schema:citation sg:pub.10.1007/bf00251609
5 https://doi.org/10.1016/0022-0396(70)90101-4
6 https://doi.org/10.1016/0022-0396(85)90147-0
7 https://doi.org/10.1016/0022-247x(77)90005-1
8 https://doi.org/10.1080/03605307908820094
9 https://doi.org/10.1090/qam/1079915
10 https://doi.org/10.1090/qam/478939
11 https://doi.org/10.1137/0516007
12 schema:datePublished 1996-04
13 schema:datePublishedReg 1996-04-01
14 schema:description We consider the anisotropic and inhomogeneous viscoelastic equation and we prove that the first and second order energy decay polynomially as time goes to infinity when the relaxation function also decays polynomially to zero. That is, if the kernelGijkl satisfies then the first and second order energy decay as withq=2m−1.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N91afa2981c524d45a2f5d2a7d617efae
19 N95a3bfbde4ce4bfd881f5bbeb8625568
20 sg:journal.1136216
21 schema:name Decay rates of solutions of an anisotropic inhomogeneousn-dimensional viscoelastic equation with polynomially decaying kernels
22 schema:pagination 583-602
23 schema:productId N0c70e40921e94526bfe6f49f012850f9
24 N78dac16231414bd68805bedc8b9aa213
25 Nf884e7b6586d48d89ba6f0c74b66ec1e
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000355683
27 https://doi.org/10.1007/bf02099539
28 schema:sdDatePublished 2019-04-11T12:43
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N2e047099b40c4649b39d6058be7f56f8
31 schema:url http://link.springer.com/10.1007/BF02099539
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0c70e40921e94526bfe6f49f012850f9 schema:name readcube_id
36 schema:value 01b18ae57eeedeab7a50b176676865d3f210e2d16f43a0ddc6598a28d3de1a19
37 rdf:type schema:PropertyValue
38 N14ee2dfdeeea4a599b6053829b407db5 rdf:first sg:person.016005375553.70
39 rdf:rest Nf18e198bb48348daa336925a65540a5d
40 N2e047099b40c4649b39d6058be7f56f8 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N78dac16231414bd68805bedc8b9aa213 schema:name dimensions_id
43 schema:value pub.1000355683
44 rdf:type schema:PropertyValue
45 N91afa2981c524d45a2f5d2a7d617efae schema:volumeNumber 177
46 rdf:type schema:PublicationVolume
47 N95a3bfbde4ce4bfd881f5bbeb8625568 schema:issueNumber 3
48 rdf:type schema:PublicationIssue
49 Nf18e198bb48348daa336925a65540a5d rdf:first sg:person.013704547320.07
50 rdf:rest rdf:nil
51 Nf884e7b6586d48d89ba6f0c74b66ec1e schema:name doi
52 schema:value 10.1007/bf02099539
53 rdf:type schema:PropertyValue
54 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
55 schema:name Biological Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
58 schema:name Biochemistry and Cell Biology
59 rdf:type schema:DefinedTerm
60 sg:journal.1136216 schema:issn 0010-3616
61 1432-0916
62 schema:name Communications in Mathematical Physics
63 rdf:type schema:Periodical
64 sg:person.013704547320.07 schema:affiliation https://www.grid.ac/institutes/grid.10800.39
65 schema:familyName Lapa
66 schema:givenName Eugenio Cabanillas
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013704547320.07
68 rdf:type schema:Person
69 sg:person.016005375553.70 schema:affiliation https://www.grid.ac/institutes/grid.8536.8
70 schema:familyName Muñoz Rivera
71 schema:givenName Jaime E.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016005375553.70
73 rdf:type schema:Person
74 sg:pub.10.1007/bf00251609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024392642
75 https://doi.org/10.1007/bf00251609
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/0022-0396(70)90101-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047523487
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/0022-0396(85)90147-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030265788
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/0022-247x(77)90005-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035578545
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1080/03605307908820094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039591322
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1090/qam/1079915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059346838
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1090/qam/478939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059348713
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1137/0516007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062847673
90 rdf:type schema:CreativeWork
91 https://www.grid.ac/institutes/grid.10800.39 schema:alternateName National University of San Marcos
92 schema:name Universidad Nacional Mayor de San Marcos, Av. Venezuela s/n, Lima, Peru
93 rdf:type schema:Organization
94 https://www.grid.ac/institutes/grid.8536.8 schema:alternateName Federal University of Rio de Janeiro
95 schema:name Department of Research and Development, National Laboratory for Scientific Computation, Rua Lauro Müller 455, Botafogo Cep. 22290, Rio de Janeiro, RJ, Brasil
96 IM, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brasil
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...