Decay rates of solutions of an anisotropic inhomogeneousn-dimensional viscoelastic equation with polynomially decaying kernels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-04

AUTHORS

Jaime E. Muñoz Rivera, Eugenio Cabanillas Lapa

ABSTRACT

We consider the anisotropic and inhomogeneous viscoelastic equation and we prove that the first and second order energy decay polynomially as time goes to infinity when the relaxation function also decays polynomially to zero. That is, if the kernelGijkl satisfies then the first and second order energy decay as withq=2m−1.

PAGES

583-602

References to SciGraph publications

  • 1970-01. Asymptotic stability in viscoelasticity in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02099539

    DOI

    http://dx.doi.org/10.1007/bf02099539

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1000355683


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Federal University of Rio de Janeiro", 
              "id": "https://www.grid.ac/institutes/grid.8536.8", 
              "name": [
                "Department of Research and Development, National Laboratory for Scientific Computation, Rua Lauro M\u00fcller 455, Botafogo Cep. 22290, Rio de Janeiro, RJ, Brasil", 
                "IM, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brasil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mu\u00f1oz Rivera", 
            "givenName": "Jaime E.", 
            "id": "sg:person.016005375553.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016005375553.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of San Marcos", 
              "id": "https://www.grid.ac/institutes/grid.10800.39", 
              "name": [
                "Universidad Nacional Mayor de San Marcos, Av. Venezuela s/n, Lima, Peru"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lapa", 
            "givenName": "Eugenio Cabanillas", 
            "id": "sg:person.013704547320.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013704547320.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00251609", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024392642", 
              "https://doi.org/10.1007/bf00251609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00251609", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024392642", 
              "https://doi.org/10.1007/bf00251609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0396(85)90147-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030265788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-247x(77)90005-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035578545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03605307908820094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039591322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0396(70)90101-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047523487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/qam/1079915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059346838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/qam/478939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059348713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0516007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062847673"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1996-04", 
        "datePublishedReg": "1996-04-01", 
        "description": "We consider the anisotropic and inhomogeneous viscoelastic equation and we prove that the first and second order energy decay polynomially as time goes to infinity when the relaxation function also decays polynomially to zero. That is, if the kernelGijkl satisfies then the first and second order energy decay as withq=2m\u22121.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02099539", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "177"
          }
        ], 
        "name": "Decay rates of solutions of an anisotropic inhomogeneousn-dimensional viscoelastic equation with polynomially decaying kernels", 
        "pagination": "583-602", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "01b18ae57eeedeab7a50b176676865d3f210e2d16f43a0ddc6598a28d3de1a19"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02099539"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1000355683"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02099539", 
          "https://app.dimensions.ai/details/publication/pub.1000355683"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70064_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF02099539"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02099539'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02099539'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02099539'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02099539'


     

    This table displays all metadata directly associated to this object as RDF triples.

    97 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02099539 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author N3a70ea658e134cfaa43d303aec51f934
    4 schema:citation sg:pub.10.1007/bf00251609
    5 https://doi.org/10.1016/0022-0396(70)90101-4
    6 https://doi.org/10.1016/0022-0396(85)90147-0
    7 https://doi.org/10.1016/0022-247x(77)90005-1
    8 https://doi.org/10.1080/03605307908820094
    9 https://doi.org/10.1090/qam/1079915
    10 https://doi.org/10.1090/qam/478939
    11 https://doi.org/10.1137/0516007
    12 schema:datePublished 1996-04
    13 schema:datePublishedReg 1996-04-01
    14 schema:description We consider the anisotropic and inhomogeneous viscoelastic equation and we prove that the first and second order energy decay polynomially as time goes to infinity when the relaxation function also decays polynomially to zero. That is, if the kernelGijkl satisfies then the first and second order energy decay as withq=2m−1.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N81bac322bfc14798bb6006c8f7394995
    19 Ndf486c68470e4141a09eb713055ea5e0
    20 sg:journal.1136216
    21 schema:name Decay rates of solutions of an anisotropic inhomogeneousn-dimensional viscoelastic equation with polynomially decaying kernels
    22 schema:pagination 583-602
    23 schema:productId N4551679b57524bd4b615f17f109215a2
    24 N6d105dd37af4463cb5c39c2e1970b4fc
    25 N88ece9a1f3a548a0bf61359971679538
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000355683
    27 https://doi.org/10.1007/bf02099539
    28 schema:sdDatePublished 2019-04-11T12:43
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N190dea9c6cbd41fb9bcdf861086139dc
    31 schema:url http://link.springer.com/10.1007/BF02099539
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N190dea9c6cbd41fb9bcdf861086139dc schema:name Springer Nature - SN SciGraph project
    36 rdf:type schema:Organization
    37 N3a70ea658e134cfaa43d303aec51f934 rdf:first sg:person.016005375553.70
    38 rdf:rest N52ac16de79924d0780503b5e514fd728
    39 N4551679b57524bd4b615f17f109215a2 schema:name doi
    40 schema:value 10.1007/bf02099539
    41 rdf:type schema:PropertyValue
    42 N52ac16de79924d0780503b5e514fd728 rdf:first sg:person.013704547320.07
    43 rdf:rest rdf:nil
    44 N6d105dd37af4463cb5c39c2e1970b4fc schema:name readcube_id
    45 schema:value 01b18ae57eeedeab7a50b176676865d3f210e2d16f43a0ddc6598a28d3de1a19
    46 rdf:type schema:PropertyValue
    47 N81bac322bfc14798bb6006c8f7394995 schema:volumeNumber 177
    48 rdf:type schema:PublicationVolume
    49 N88ece9a1f3a548a0bf61359971679538 schema:name dimensions_id
    50 schema:value pub.1000355683
    51 rdf:type schema:PropertyValue
    52 Ndf486c68470e4141a09eb713055ea5e0 schema:issueNumber 3
    53 rdf:type schema:PublicationIssue
    54 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Biological Sciences
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Biochemistry and Cell Biology
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1136216 schema:issn 0010-3616
    61 1432-0916
    62 schema:name Communications in Mathematical Physics
    63 rdf:type schema:Periodical
    64 sg:person.013704547320.07 schema:affiliation https://www.grid.ac/institutes/grid.10800.39
    65 schema:familyName Lapa
    66 schema:givenName Eugenio Cabanillas
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013704547320.07
    68 rdf:type schema:Person
    69 sg:person.016005375553.70 schema:affiliation https://www.grid.ac/institutes/grid.8536.8
    70 schema:familyName Muñoz Rivera
    71 schema:givenName Jaime E.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016005375553.70
    73 rdf:type schema:Person
    74 sg:pub.10.1007/bf00251609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024392642
    75 https://doi.org/10.1007/bf00251609
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1016/0022-0396(70)90101-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047523487
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1016/0022-0396(85)90147-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030265788
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/0022-247x(77)90005-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035578545
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1080/03605307908820094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039591322
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1090/qam/1079915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059346838
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1090/qam/478939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059348713
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1137/0516007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062847673
    90 rdf:type schema:CreativeWork
    91 https://www.grid.ac/institutes/grid.10800.39 schema:alternateName National University of San Marcos
    92 schema:name Universidad Nacional Mayor de San Marcos, Av. Venezuela s/n, Lima, Peru
    93 rdf:type schema:Organization
    94 https://www.grid.ac/institutes/grid.8536.8 schema:alternateName Federal University of Rio de Janeiro
    95 schema:name Department of Research and Development, National Laboratory for Scientific Computation, Rua Lauro Müller 455, Botafogo Cep. 22290, Rio de Janeiro, RJ, Brasil
    96 IM, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brasil
    97 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...