Lattice gas models in contact with stochastic reservoirs: Local equilibrium and relaxation to the steady state View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-08

AUTHORS

Gregory Eyink, Joel L. Lebowitz, Herbert Spohn

ABSTRACT

Extending the results of a previous work, we consider a class of discrete lattice gas models in a finite interval whose bulk dynamics consists of stochastic exchanges which conserve the particle number, and with stochastic dynamics at the boundaries chosen to model infinite particle reservoirs at fixed chemical potentials. We establish here the local equilibrium structure of the stationary measures for these models. Further, we prove as a law of large numbers that the time-dependent empirical density field converges to a deterministic limit process which is the solution of the initial-boundary value problem for a nonlinear diffusion equation. More... »

PAGES

119-131

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02099293

DOI

http://dx.doi.org/10.1007/bf02099293

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013107580


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Mathematics and Physics, Rutgers University, 08903, New Brunswick, NJ, USA", 
            "Theoretische Physik, Universit\u00e4t M\u00fcnchen, W-8000, M\u00fcnchen, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eyink", 
        "givenName": "Gregory", 
        "id": "sg:person.0657261436.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657261436.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Mathematics and Physics, Rutgers University, 08903, New Brunswick, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebowitz", 
        "givenName": "Joel L.", 
        "id": "sg:person.015317013331.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015317013331.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Theoretische Physik, Universit\u00e4t M\u00fcnchen, W-8000, M\u00fcnchen, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spohn", 
        "givenName": "Herbert", 
        "id": "sg:person.0762212765.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762212765.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01218476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016614190", 
          "https://doi.org/10.1007/bf01218476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01218476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016614190", 
          "https://doi.org/10.1007/bf01218476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02278011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043562108", 
          "https://doi.org/10.1007/bf02278011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02278011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043562108", 
          "https://doi.org/10.1007/bf02278011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01941803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053040699", 
          "https://doi.org/10.1007/bf01941803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01941803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053040699", 
          "https://doi.org/10.1007/bf01941803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176993447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064404674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110850147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096920745"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-08", 
    "datePublishedReg": "1991-08-01", 
    "description": "Extending the results of a previous work, we consider a class of discrete lattice gas models in a finite interval whose bulk dynamics consists of stochastic exchanges which conserve the particle number, and with stochastic dynamics at the boundaries chosen to model infinite particle reservoirs at fixed chemical potentials. We establish here the local equilibrium structure of the stationary measures for these models. Further, we prove as a law of large numbers that the time-dependent empirical density field converges to a deterministic limit process which is the solution of the initial-boundary value problem for a nonlinear diffusion equation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02099293", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "140"
      }
    ], 
    "name": "Lattice gas models in contact with stochastic reservoirs: Local equilibrium and relaxation to the steady state", 
    "pagination": "119-131", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3e70e2dab7ce501de980dcac55dee4830808d4e0bea58f6ef51e7abd58f2489b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02099293"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013107580"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02099293", 
      "https://app.dimensions.ai/details/publication/pub.1013107580"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118315_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02099293"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02099293'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02099293'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02099293'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02099293'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02099293 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nd427f4af47c34e56b67fc69a80992c75
4 schema:citation sg:pub.10.1007/bf01218476
5 sg:pub.10.1007/bf01941803
6 sg:pub.10.1007/bf02278011
7 https://doi.org/10.1214/aop/1176993447
8 https://doi.org/10.1515/9783110850147
9 schema:datePublished 1991-08
10 schema:datePublishedReg 1991-08-01
11 schema:description Extending the results of a previous work, we consider a class of discrete lattice gas models in a finite interval whose bulk dynamics consists of stochastic exchanges which conserve the particle number, and with stochastic dynamics at the boundaries chosen to model infinite particle reservoirs at fixed chemical potentials. We establish here the local equilibrium structure of the stationary measures for these models. Further, we prove as a law of large numbers that the time-dependent empirical density field converges to a deterministic limit process which is the solution of the initial-boundary value problem for a nonlinear diffusion equation.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N0b09bc5544b845c095339b51b0c24d90
16 Neb209a794e604f709d09cb9b54a02dda
17 sg:journal.1136216
18 schema:name Lattice gas models in contact with stochastic reservoirs: Local equilibrium and relaxation to the steady state
19 schema:pagination 119-131
20 schema:productId N1a9c982deec745c59747078cb04f3891
21 N3eddb6d43c084d9c8bb5051944d2907c
22 N46863c47d6ef483e94e8feb4a4c99fa7
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013107580
24 https://doi.org/10.1007/bf02099293
25 schema:sdDatePublished 2019-04-11T12:04
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nace0d68af73f4b6aab803d413bd4d6c4
28 schema:url http://link.springer.com/10.1007/BF02099293
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N0b09bc5544b845c095339b51b0c24d90 schema:issueNumber 1
33 rdf:type schema:PublicationIssue
34 N1a9c982deec745c59747078cb04f3891 schema:name doi
35 schema:value 10.1007/bf02099293
36 rdf:type schema:PropertyValue
37 N3eddb6d43c084d9c8bb5051944d2907c schema:name readcube_id
38 schema:value 3e70e2dab7ce501de980dcac55dee4830808d4e0bea58f6ef51e7abd58f2489b
39 rdf:type schema:PropertyValue
40 N426128ec5b6643f7a9e32c5551439694 rdf:first sg:person.015317013331.48
41 rdf:rest N5f841b909952402888ff30db609dfa44
42 N46863c47d6ef483e94e8feb4a4c99fa7 schema:name dimensions_id
43 schema:value pub.1013107580
44 rdf:type schema:PropertyValue
45 N5f841b909952402888ff30db609dfa44 rdf:first sg:person.0762212765.01
46 rdf:rest rdf:nil
47 Nace0d68af73f4b6aab803d413bd4d6c4 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Nd427f4af47c34e56b67fc69a80992c75 rdf:first sg:person.0657261436.69
50 rdf:rest N426128ec5b6643f7a9e32c5551439694
51 Neb209a794e604f709d09cb9b54a02dda schema:volumeNumber 140
52 rdf:type schema:PublicationVolume
53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
54 schema:name Mathematical Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
57 schema:name Statistics
58 rdf:type schema:DefinedTerm
59 sg:journal.1136216 schema:issn 0010-3616
60 1432-0916
61 schema:name Communications in Mathematical Physics
62 rdf:type schema:Periodical
63 sg:person.015317013331.48 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
64 schema:familyName Lebowitz
65 schema:givenName Joel L.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015317013331.48
67 rdf:type schema:Person
68 sg:person.0657261436.69 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
69 schema:familyName Eyink
70 schema:givenName Gregory
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657261436.69
72 rdf:type schema:Person
73 sg:person.0762212765.01 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
74 schema:familyName Spohn
75 schema:givenName Herbert
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762212765.01
77 rdf:type schema:Person
78 sg:pub.10.1007/bf01218476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016614190
79 https://doi.org/10.1007/bf01218476
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf01941803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053040699
82 https://doi.org/10.1007/bf01941803
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf02278011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043562108
85 https://doi.org/10.1007/bf02278011
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1214/aop/1176993447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064404674
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1515/9783110850147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096920745
90 rdf:type schema:CreativeWork
91 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
92 schema:name Department of Mathematics and Physics, Rutgers University, 08903, New Brunswick, NJ, USA
93 rdf:type schema:Organization
94 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
95 schema:name Department of Mathematics and Physics, Rutgers University, 08903, New Brunswick, NJ, USA
96 Theoretische Physik, Universität München, W-8000, München, Federal Republic of Germany
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...