Lattice gas models in contact with stochastic reservoirs: Local equilibrium and relaxation to the steady state View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-08

AUTHORS

Gregory Eyink, Joel L. Lebowitz, Herbert Spohn

ABSTRACT

Extending the results of a previous work, we consider a class of discrete lattice gas models in a finite interval whose bulk dynamics consists of stochastic exchanges which conserve the particle number, and with stochastic dynamics at the boundaries chosen to model infinite particle reservoirs at fixed chemical potentials. We establish here the local equilibrium structure of the stationary measures for these models. Further, we prove as a law of large numbers that the time-dependent empirical density field converges to a deterministic limit process which is the solution of the initial-boundary value problem for a nonlinear diffusion equation. More... »

PAGES

119-131

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02099293

DOI

http://dx.doi.org/10.1007/bf02099293

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013107580


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Mathematics and Physics, Rutgers University, 08903, New Brunswick, NJ, USA", 
            "Theoretische Physik, Universit\u00e4t M\u00fcnchen, W-8000, M\u00fcnchen, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eyink", 
        "givenName": "Gregory", 
        "id": "sg:person.0657261436.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657261436.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Mathematics and Physics, Rutgers University, 08903, New Brunswick, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebowitz", 
        "givenName": "Joel L.", 
        "id": "sg:person.015317013331.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015317013331.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Theoretische Physik, Universit\u00e4t M\u00fcnchen, W-8000, M\u00fcnchen, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spohn", 
        "givenName": "Herbert", 
        "id": "sg:person.0762212765.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762212765.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01218476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016614190", 
          "https://doi.org/10.1007/bf01218476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01218476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016614190", 
          "https://doi.org/10.1007/bf01218476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02278011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043562108", 
          "https://doi.org/10.1007/bf02278011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02278011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043562108", 
          "https://doi.org/10.1007/bf02278011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01941803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053040699", 
          "https://doi.org/10.1007/bf01941803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01941803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053040699", 
          "https://doi.org/10.1007/bf01941803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176993447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064404674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110850147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096920745"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-08", 
    "datePublishedReg": "1991-08-01", 
    "description": "Extending the results of a previous work, we consider a class of discrete lattice gas models in a finite interval whose bulk dynamics consists of stochastic exchanges which conserve the particle number, and with stochastic dynamics at the boundaries chosen to model infinite particle reservoirs at fixed chemical potentials. We establish here the local equilibrium structure of the stationary measures for these models. Further, we prove as a law of large numbers that the time-dependent empirical density field converges to a deterministic limit process which is the solution of the initial-boundary value problem for a nonlinear diffusion equation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02099293", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "140"
      }
    ], 
    "name": "Lattice gas models in contact with stochastic reservoirs: Local equilibrium and relaxation to the steady state", 
    "pagination": "119-131", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3e70e2dab7ce501de980dcac55dee4830808d4e0bea58f6ef51e7abd58f2489b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02099293"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013107580"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02099293", 
      "https://app.dimensions.ai/details/publication/pub.1013107580"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118315_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02099293"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02099293'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02099293'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02099293'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02099293'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02099293 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N9dc3421207ac41b481f84f0cab797068
4 schema:citation sg:pub.10.1007/bf01218476
5 sg:pub.10.1007/bf01941803
6 sg:pub.10.1007/bf02278011
7 https://doi.org/10.1214/aop/1176993447
8 https://doi.org/10.1515/9783110850147
9 schema:datePublished 1991-08
10 schema:datePublishedReg 1991-08-01
11 schema:description Extending the results of a previous work, we consider a class of discrete lattice gas models in a finite interval whose bulk dynamics consists of stochastic exchanges which conserve the particle number, and with stochastic dynamics at the boundaries chosen to model infinite particle reservoirs at fixed chemical potentials. We establish here the local equilibrium structure of the stationary measures for these models. Further, we prove as a law of large numbers that the time-dependent empirical density field converges to a deterministic limit process which is the solution of the initial-boundary value problem for a nonlinear diffusion equation.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N58a0aa7a04e04652b08d3d4cb0199c47
16 Nac4459ee3a304f52af19a07c43c83f13
17 sg:journal.1136216
18 schema:name Lattice gas models in contact with stochastic reservoirs: Local equilibrium and relaxation to the steady state
19 schema:pagination 119-131
20 schema:productId N508a498f97384908bfe8373200fbbf7c
21 N64dcbb8d00154734aaf2f8173f364863
22 Na9c50fcc5a9b40bd8aca4f0859c0f4cb
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013107580
24 https://doi.org/10.1007/bf02099293
25 schema:sdDatePublished 2019-04-11T12:04
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N97d3c567068d4af8b4505b09670a75fa
28 schema:url http://link.springer.com/10.1007/BF02099293
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N1793bc99599847569416cc7ede6668ae rdf:first sg:person.015317013331.48
33 rdf:rest Nef284dc006074206b483a98da49fddb4
34 N508a498f97384908bfe8373200fbbf7c schema:name readcube_id
35 schema:value 3e70e2dab7ce501de980dcac55dee4830808d4e0bea58f6ef51e7abd58f2489b
36 rdf:type schema:PropertyValue
37 N58a0aa7a04e04652b08d3d4cb0199c47 schema:issueNumber 1
38 rdf:type schema:PublicationIssue
39 N64dcbb8d00154734aaf2f8173f364863 schema:name doi
40 schema:value 10.1007/bf02099293
41 rdf:type schema:PropertyValue
42 N97d3c567068d4af8b4505b09670a75fa schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N9dc3421207ac41b481f84f0cab797068 rdf:first sg:person.0657261436.69
45 rdf:rest N1793bc99599847569416cc7ede6668ae
46 Na9c50fcc5a9b40bd8aca4f0859c0f4cb schema:name dimensions_id
47 schema:value pub.1013107580
48 rdf:type schema:PropertyValue
49 Nac4459ee3a304f52af19a07c43c83f13 schema:volumeNumber 140
50 rdf:type schema:PublicationVolume
51 Nef284dc006074206b483a98da49fddb4 rdf:first sg:person.0762212765.01
52 rdf:rest rdf:nil
53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
54 schema:name Mathematical Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
57 schema:name Statistics
58 rdf:type schema:DefinedTerm
59 sg:journal.1136216 schema:issn 0010-3616
60 1432-0916
61 schema:name Communications in Mathematical Physics
62 rdf:type schema:Periodical
63 sg:person.015317013331.48 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
64 schema:familyName Lebowitz
65 schema:givenName Joel L.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015317013331.48
67 rdf:type schema:Person
68 sg:person.0657261436.69 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
69 schema:familyName Eyink
70 schema:givenName Gregory
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657261436.69
72 rdf:type schema:Person
73 sg:person.0762212765.01 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
74 schema:familyName Spohn
75 schema:givenName Herbert
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762212765.01
77 rdf:type schema:Person
78 sg:pub.10.1007/bf01218476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016614190
79 https://doi.org/10.1007/bf01218476
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf01941803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053040699
82 https://doi.org/10.1007/bf01941803
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf02278011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043562108
85 https://doi.org/10.1007/bf02278011
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1214/aop/1176993447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064404674
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1515/9783110850147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096920745
90 rdf:type schema:CreativeWork
91 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
92 schema:name Department of Mathematics and Physics, Rutgers University, 08903, New Brunswick, NJ, USA
93 rdf:type schema:Organization
94 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
95 schema:name Department of Mathematics and Physics, Rutgers University, 08903, New Brunswick, NJ, USA
96 Theoretische Physik, Universität München, W-8000, München, Federal Republic of Germany
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...