Asymptotic properties of the solutions of linear and nonlinear spin field equations in Minkowski space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-10

AUTHORS

Wei-Tong Shu

ABSTRACT

In this paper I will first derive, based on energy estimations and geometric invariance, the asymptotic behavior of solutions of linear spin field equations in Minkowski space. It generalizes the result in [3] where it was proved for the spin-1 and spin-2 cases. The techniques are then applied to Yang-Mills equations, the result improves the previous one in [1] by allowing the initial data to have charge, dipole and quadrupole moments. The Lie derivative operator for spinors and some properties will be also discussed; they can be used to simplify some algebraic calculations of [4]. More... »

PAGES

449-480

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02099131

DOI

http://dx.doi.org/10.1007/bf02099131

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015273331


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Study", 
          "id": "https://www.grid.ac/institutes/grid.78989.37", 
          "name": [
            "Institute for Advanced Study, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shu", 
        "givenName": "Wei-Tong", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1098/rspa.1965.0058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011974651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01206943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024565488", 
          "https://doi.org/10.1007/bf01206943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01206943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024565488", 
          "https://doi.org/10.1007/bf01206943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160430202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026940650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160430202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026940650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160390205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028949614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160390205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028949614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01976040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033211346", 
          "https://doi.org/10.1007/bf01976040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01976040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033211346", 
          "https://doi.org/10.1007/bf01976040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01976041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042834351", 
          "https://doi.org/10.1007/bf01976041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01976041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042834351", 
          "https://doi.org/10.1007/bf01976041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160380305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052958137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160380305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052958137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1724257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057791131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/asens.1417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084407991"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-10", 
    "datePublishedReg": "1991-10-01", 
    "description": "In this paper I will first derive, based on energy estimations and geometric invariance, the asymptotic behavior of solutions of linear spin field equations in Minkowski space. It generalizes the result in [3] where it was proved for the spin-1 and spin-2 cases. The techniques are then applied to Yang-Mills equations, the result improves the previous one in [1] by allowing the initial data to have charge, dipole and quadrupole moments. The Lie derivative operator for spinors and some properties will be also discussed; they can be used to simplify some algebraic calculations of [4].", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02099131", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "140"
      }
    ], 
    "name": "Asymptotic properties of the solutions of linear and nonlinear spin field equations in Minkowski space", 
    "pagination": "449-480", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "48c5236316b04f0980b541ff62df5621b0dfadf5b8982e4a0f5d24f963bb17c2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02099131"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015273331"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02099131", 
      "https://app.dimensions.ai/details/publication/pub.1015273331"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70064_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02099131"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02099131'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02099131'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02099131'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02099131'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02099131 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Na7c21f216fc14f48b7ce9136ef8d5557
4 schema:citation sg:pub.10.1007/bf01206943
5 sg:pub.10.1007/bf01976040
6 sg:pub.10.1007/bf01976041
7 https://doi.org/10.1002/cpa.3160380305
8 https://doi.org/10.1002/cpa.3160390205
9 https://doi.org/10.1002/cpa.3160430202
10 https://doi.org/10.1063/1.1724257
11 https://doi.org/10.1098/rspa.1965.0058
12 https://doi.org/10.24033/asens.1417
13 schema:datePublished 1991-10
14 schema:datePublishedReg 1991-10-01
15 schema:description In this paper I will first derive, based on energy estimations and geometric invariance, the asymptotic behavior of solutions of linear spin field equations in Minkowski space. It generalizes the result in [3] where it was proved for the spin-1 and spin-2 cases. The techniques are then applied to Yang-Mills equations, the result improves the previous one in [1] by allowing the initial data to have charge, dipole and quadrupole moments. The Lie derivative operator for spinors and some properties will be also discussed; they can be used to simplify some algebraic calculations of [4].
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N1fcc0d9652354141be5a85d45f928615
20 N394cdb4e06264e7c87c092dcebfceba6
21 sg:journal.1136216
22 schema:name Asymptotic properties of the solutions of linear and nonlinear spin field equations in Minkowski space
23 schema:pagination 449-480
24 schema:productId N141c1a95d4104262af2ecc85eaebed69
25 Nae14e78be8584db1bba799770d395283
26 Necba990058bc48c39b69fc165a2b9e9c
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015273331
28 https://doi.org/10.1007/bf02099131
29 schema:sdDatePublished 2019-04-11T12:43
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N4fe5bea0ec364efdaa40141bfa2e4f0d
32 schema:url http://link.springer.com/10.1007/BF02099131
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N141c1a95d4104262af2ecc85eaebed69 schema:name doi
37 schema:value 10.1007/bf02099131
38 rdf:type schema:PropertyValue
39 N1fcc0d9652354141be5a85d45f928615 schema:issueNumber 3
40 rdf:type schema:PublicationIssue
41 N394cdb4e06264e7c87c092dcebfceba6 schema:volumeNumber 140
42 rdf:type schema:PublicationVolume
43 N4fe5bea0ec364efdaa40141bfa2e4f0d schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N8cadba2db1d749eaae22ca8d4869b95c schema:affiliation https://www.grid.ac/institutes/grid.78989.37
46 schema:familyName Shu
47 schema:givenName Wei-Tong
48 rdf:type schema:Person
49 Na7c21f216fc14f48b7ce9136ef8d5557 rdf:first N8cadba2db1d749eaae22ca8d4869b95c
50 rdf:rest rdf:nil
51 Nae14e78be8584db1bba799770d395283 schema:name readcube_id
52 schema:value 48c5236316b04f0980b541ff62df5621b0dfadf5b8982e4a0f5d24f963bb17c2
53 rdf:type schema:PropertyValue
54 Necba990058bc48c39b69fc165a2b9e9c schema:name dimensions_id
55 schema:value pub.1015273331
56 rdf:type schema:PropertyValue
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
61 schema:name Pure Mathematics
62 rdf:type schema:DefinedTerm
63 sg:journal.1136216 schema:issn 0010-3616
64 1432-0916
65 schema:name Communications in Mathematical Physics
66 rdf:type schema:Periodical
67 sg:pub.10.1007/bf01206943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024565488
68 https://doi.org/10.1007/bf01206943
69 rdf:type schema:CreativeWork
70 sg:pub.10.1007/bf01976040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033211346
71 https://doi.org/10.1007/bf01976040
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/bf01976041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042834351
74 https://doi.org/10.1007/bf01976041
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1002/cpa.3160380305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052958137
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1002/cpa.3160390205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028949614
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1002/cpa.3160430202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026940650
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1063/1.1724257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057791131
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1098/rspa.1965.0058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011974651
85 rdf:type schema:CreativeWork
86 https://doi.org/10.24033/asens.1417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084407991
87 rdf:type schema:CreativeWork
88 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
89 schema:name Institute for Advanced Study, 08540, Princeton, NJ, USA
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...