Inequivalent quantizations for non-linear σ model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-09

AUTHORS

G. Date, T. R. Govindarajan, P. Sankaran, R. Shankar

ABSTRACT

We compute the homotopy groupsΠ0 andΠ1 of the classical configuration space of anO(3) invariant field theory on ×ℝ, where is a compact two dimensional manifold for arbitrary genusg and-ℝ denotes the time coordinate. We also present the finite dimensional, unitary, irreducible, inequivalent representations of the appropriate fundamental groups and comment on some of their implications. More... »

PAGES

293-313

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02096651

DOI

http://dx.doi.org/10.1007/bf02096651

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025113719


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "The Institute of Mathematical Sciences, 600113, Madras, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Date", 
        "givenName": "G.", 
        "id": "sg:person.012743002601.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012743002601.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Madras", 
          "id": "https://www.grid.ac/institutes/grid.413015.2", 
          "name": [
            "Department of Physics, Loyola College, 600034, Madras, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Govindarajan", 
        "givenName": "T. R.", 
        "id": "sg:person.014547132667.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014547132667.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "The Institute of Mathematical Sciences, 600113, Madras, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sankaran", 
        "givenName": "P.", 
        "id": "sg:person.013664672601.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664672601.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "The Institute of Mathematical Sciences, 600113, Madras, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shankar", 
        "givenName": "R.", 
        "id": "sg:person.01262300120.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262300120.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0370-2693(90)92010-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043034436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(90)92010-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043034436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043294424", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3951-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043294424", 
          "https://doi.org/10.1007/978-1-4757-3951-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3951-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043294424", 
          "https://doi.org/10.1007/978-1-4757-3951-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-6318-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048896065", 
          "https://doi.org/10.1007/978-1-4612-6318-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-6318-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048896065", 
          "https://doi.org/10.1007/978-1-4612-6318-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(88)90395-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049376973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(88)90395-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049376973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4877(74)90022-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050694888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.3.1375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060691517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.3.1375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060691517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.2250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.2250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789351"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-09", 
    "datePublishedReg": "1990-09-01", 
    "description": "We compute the homotopy groups\u03a00 and\u03a01 of the classical configuration space of anO(3) invariant field theory on \u00d7\u211d, where is a compact two dimensional manifold for arbitrary genusg and-\u211d denotes the time coordinate. We also present the finite dimensional, unitary, irreducible, inequivalent representations of the appropriate fundamental groups and comment on some of their implications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02096651", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "132"
      }
    ], 
    "name": "Inequivalent quantizations for non-linear \u03c3 model", 
    "pagination": "293-313", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "77a487ebe5febdba1295a73591c5120cecff5ac1b1ed6175781dd0fea7fefa0c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02096651"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025113719"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02096651", 
      "https://app.dimensions.ai/details/publication/pub.1025113719"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02096651"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02096651'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02096651'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02096651'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02096651'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02096651 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N39805e4de73c41f9b84d2e224e4049f0
4 schema:citation sg:pub.10.1007/978-1-4612-6318-0
5 sg:pub.10.1007/978-1-4757-3951-0
6 https://app.dimensions.ai/details/publication/pub.1043294424
7 https://doi.org/10.1016/0034-4877(74)90022-6
8 https://doi.org/10.1016/0370-2693(90)92010-g
9 https://doi.org/10.1016/0375-9601(88)90395-7
10 https://doi.org/10.1103/physrevd.3.1375
11 https://doi.org/10.1103/physrevlett.51.2250
12 schema:datePublished 1990-09
13 schema:datePublishedReg 1990-09-01
14 schema:description We compute the homotopy groupsΠ0 andΠ1 of the classical configuration space of anO(3) invariant field theory on ×ℝ, where is a compact two dimensional manifold for arbitrary genusg and-ℝ denotes the time coordinate. We also present the finite dimensional, unitary, irreducible, inequivalent representations of the appropriate fundamental groups and comment on some of their implications.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N72116d064ee3484895f150529594e282
19 N9dc6a85bb110465b84c4ed9fc9e51f4d
20 sg:journal.1136216
21 schema:name Inequivalent quantizations for non-linear σ model
22 schema:pagination 293-313
23 schema:productId N1df9d787798d43e7b0582ccce6c8abb4
24 N91db0fdc1e1d4f4fa6a35322e61d28b6
25 Ncdd6329a9ba648aea73d3f0ffbbb7a08
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025113719
27 https://doi.org/10.1007/bf02096651
28 schema:sdDatePublished 2019-04-11T12:27
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nb2df88bd1e8c445392fbe41a9a924e0c
31 schema:url http://link.springer.com/10.1007/BF02096651
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N1df9d787798d43e7b0582ccce6c8abb4 schema:name doi
36 schema:value 10.1007/bf02096651
37 rdf:type schema:PropertyValue
38 N204d46ff2f464e1d86186be1219fed72 rdf:first sg:person.013664672601.54
39 rdf:rest Nfcbed8ab13aa4a419e819911dfa347fd
40 N39805e4de73c41f9b84d2e224e4049f0 rdf:first sg:person.012743002601.29
41 rdf:rest Ne6c8962f2bf2417db9cef3bbdd5e1ea6
42 N72116d064ee3484895f150529594e282 schema:volumeNumber 132
43 rdf:type schema:PublicationVolume
44 N91db0fdc1e1d4f4fa6a35322e61d28b6 schema:name dimensions_id
45 schema:value pub.1025113719
46 rdf:type schema:PropertyValue
47 N9dc6a85bb110465b84c4ed9fc9e51f4d schema:issueNumber 2
48 rdf:type schema:PublicationIssue
49 Nb2df88bd1e8c445392fbe41a9a924e0c schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Ncdd6329a9ba648aea73d3f0ffbbb7a08 schema:name readcube_id
52 schema:value 77a487ebe5febdba1295a73591c5120cecff5ac1b1ed6175781dd0fea7fefa0c
53 rdf:type schema:PropertyValue
54 Ne6c8962f2bf2417db9cef3bbdd5e1ea6 rdf:first sg:person.014547132667.28
55 rdf:rest N204d46ff2f464e1d86186be1219fed72
56 Nfcbed8ab13aa4a419e819911dfa347fd rdf:first sg:person.01262300120.81
57 rdf:rest rdf:nil
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136216 schema:issn 0010-3616
65 1432-0916
66 schema:name Communications in Mathematical Physics
67 rdf:type schema:Periodical
68 sg:person.01262300120.81 schema:affiliation https://www.grid.ac/institutes/grid.462414.1
69 schema:familyName Shankar
70 schema:givenName R.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262300120.81
72 rdf:type schema:Person
73 sg:person.012743002601.29 schema:affiliation https://www.grid.ac/institutes/grid.462414.1
74 schema:familyName Date
75 schema:givenName G.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012743002601.29
77 rdf:type schema:Person
78 sg:person.013664672601.54 schema:affiliation https://www.grid.ac/institutes/grid.462414.1
79 schema:familyName Sankaran
80 schema:givenName P.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664672601.54
82 rdf:type schema:Person
83 sg:person.014547132667.28 schema:affiliation https://www.grid.ac/institutes/grid.413015.2
84 schema:familyName Govindarajan
85 schema:givenName T. R.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014547132667.28
87 rdf:type schema:Person
88 sg:pub.10.1007/978-1-4612-6318-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048896065
89 https://doi.org/10.1007/978-1-4612-6318-0
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/978-1-4757-3951-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043294424
92 https://doi.org/10.1007/978-1-4757-3951-0
93 rdf:type schema:CreativeWork
94 https://app.dimensions.ai/details/publication/pub.1043294424 schema:CreativeWork
95 https://doi.org/10.1016/0034-4877(74)90022-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050694888
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0370-2693(90)92010-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1043034436
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0375-9601(88)90395-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049376973
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physrevd.3.1375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060691517
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevlett.51.2250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789351
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.413015.2 schema:alternateName University of Madras
106 schema:name Department of Physics, Loyola College, 600034, Madras, India
107 rdf:type schema:Organization
108 https://www.grid.ac/institutes/grid.462414.1 schema:alternateName Institute of Mathematical Sciences
109 schema:name The Institute of Mathematical Sciences, 600113, Madras, India
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...