The inviscid Burgers equation with initial data of Brownian type View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-09

AUTHORS

Zhen-Su She, Erik Aurell, Uriel Frisch

ABSTRACT

The solutions to Burgers equation, in the limit of vanishing viscosity, are investigated when the initial velocity is a Brownian motion (or fractional Brownian motion) function, i.e. a Gaussian process with scaling exponent 0by the fact that the solution is essentially obtained by performing a Legendre transform. The main result is obtained for typeA and concerns the Lagrangian functionx(a) which gives the location at timet=1 of the fluid particle which started at the locationa. It is found to be a complete Devil's staircase. The cumulative probability of Lagrangian shock intervals Δa (also the distribution of shock amplitudes) follows a (Δa)−h law for small Δa. The remaining (regular) Lagrangian locations form a Cantor set of dimensionh. In Eulerian coordinates, the shock locations are everywhere dense. The scaling properties of various statistical quantities are also found. Heuristic interpretations are provided for some of these results. Rigorous results for the case of Brownian motion are established in a companion paper by Ya. Sinai. For typeB initial velocities (e.g. white noise), there are very few small shocks and shock locations appear to be isolated. Finally, it is shown that there are universality classes of random but smooth (non-scaling) initial velocities such that the long-time large-scale behavior is, after rescaling, the same as for typeA orB. More... »

PAGES

623-641

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02096551

DOI

http://dx.doi.org/10.1007/bf02096551

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050362339


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Applied and Computational Mathematics, Princeton University, 08544, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "She", 
        "givenName": "Zhen-Su", 
        "id": "sg:person.01241043550.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241043550.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Observatoire de Nice, CNRS, BP 229, F-06304, Nice Cedex 4, France", 
            "Department of Mathematics, KTH, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aurell", 
        "givenName": "Erik", 
        "id": "sg:person.01104576776.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104576776.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Applied and Computational Mathematics, Princeton University, 08544, NJ, USA", 
            "Observatoire de Nice, CNRS, BP 229, F-06304, Nice Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frisch", 
        "givenName": "Uriel", 
        "id": "sg:person.011615073661.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/mnras/250.2.458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000438447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02096550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001608199", 
          "https://doi.org/10.1007/bf02096550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02096550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001608199", 
          "https://doi.org/10.1007/bf02096550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mnras/236.2.385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006786135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160030302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006837674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-1745-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039474300", 
          "https://doi.org/10.1007/978-94-010-1745-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-1745-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039474300", 
          "https://doi.org/10.1007/978-94-010-1745-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112092001782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053754260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112079001932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053964767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/42889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059348553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.33.1141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060474178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.33.1141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060474178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.61.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.61.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.1981.324751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061524721"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-09", 
    "datePublishedReg": "1992-09-01", 
    "description": "The solutions to Burgers equation, in the limit of vanishing viscosity, are investigated when the initial velocity is a Brownian motion (or fractional Brownian motion) function, i.e. a Gaussian process with scaling exponent 0
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02096551'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02096551'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02096551'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02096551'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02096551 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N59cce3a969ba47ecb77dcaf18b006dbe
4 schema:citation sg:pub.10.1007/978-94-010-1745-9
5 sg:pub.10.1007/bf02096550
6 https://doi.org/10.1002/cpa.3160030302
7 https://doi.org/10.1017/s0022112079001932
8 https://doi.org/10.1017/s0022112092001782
9 https://doi.org/10.1090/qam/42889
10 https://doi.org/10.1093/mnras/236.2.385
11 https://doi.org/10.1093/mnras/250.2.458
12 https://doi.org/10.1103/physreva.33.1141
13 https://doi.org/10.1103/physrevlett.56.889
14 https://doi.org/10.1103/revmodphys.61.185
15 https://doi.org/10.1109/tbme.1981.324751
16 schema:datePublished 1992-09
17 schema:datePublishedReg 1992-09-01
18 schema:description The solutions to Burgers equation, in the limit of vanishing viscosity, are investigated when the initial velocity is a Brownian motion (or fractional Brownian motion) function, i.e. a Gaussian process with scaling exponent 0<h<1 (typeA) or the derivative thereof, with scaling exponent −1<h<0 (typeB). Largesize numerical experiments are performed, helped by the fact that the solution is essentially obtained by performing a Legendre transform. The main result is obtained for typeA and concerns the Lagrangian functionx(a) which gives the location at timet=1 of the fluid particle which started at the locationa. It is found to be a complete Devil's staircase. The cumulative probability of Lagrangian shock intervals Δa (also the distribution of shock amplitudes) follows a (Δa)−h law for small Δa. The remaining (regular) Lagrangian locations form a Cantor set of dimensionh. In Eulerian coordinates, the shock locations are everywhere dense. The scaling properties of various statistical quantities are also found. Heuristic interpretations are provided for some of these results. Rigorous results for the case of Brownian motion are established in a companion paper by Ya. Sinai. For typeB initial velocities (e.g. white noise), there are very few small shocks and shock locations appear to be isolated. Finally, it is shown that there are universality classes of random but smooth (non-scaling) initial velocities such that the long-time large-scale behavior is, after rescaling, the same as for typeA orB.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N6bfa9e7e66af4b57bf7ca56b6452d153
23 Nc407f66952d64e9daf1b07b36870f9f8
24 sg:journal.1136216
25 schema:name The inviscid Burgers equation with initial data of Brownian type
26 schema:pagination 623-641
27 schema:productId N293f299f47d94602a1d7df139b051e48
28 N8d3e1c3b7fad44bfbd428db6cc28ea5e
29 Nd76d118a98134117811b376c7ce3d7f6
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050362339
31 https://doi.org/10.1007/bf02096551
32 schema:sdDatePublished 2019-04-11T12:22
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nb10d2991ddb440d7a87e6ce62d0ae19c
35 schema:url http://link.springer.com/10.1007/BF02096551
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N027f777ab28146e18fe0ca903ae6d687 rdf:first sg:person.011615073661.47
40 rdf:rest rdf:nil
41 N293f299f47d94602a1d7df139b051e48 schema:name doi
42 schema:value 10.1007/bf02096551
43 rdf:type schema:PropertyValue
44 N3ecc8a71c36f428880d965117129b20f rdf:first sg:person.01104576776.49
45 rdf:rest N027f777ab28146e18fe0ca903ae6d687
46 N59cce3a969ba47ecb77dcaf18b006dbe rdf:first sg:person.01241043550.84
47 rdf:rest N3ecc8a71c36f428880d965117129b20f
48 N6bfa9e7e66af4b57bf7ca56b6452d153 schema:issueNumber 3
49 rdf:type schema:PublicationIssue
50 N8d3e1c3b7fad44bfbd428db6cc28ea5e schema:name readcube_id
51 schema:value efe91c5787b6d879fcdf65a0c1c91e59c04780e146cf523e9595fa6002ef97e6
52 rdf:type schema:PropertyValue
53 Nb10d2991ddb440d7a87e6ce62d0ae19c schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nc407f66952d64e9daf1b07b36870f9f8 schema:volumeNumber 148
56 rdf:type schema:PublicationVolume
57 Nd76d118a98134117811b376c7ce3d7f6 schema:name dimensions_id
58 schema:value pub.1050362339
59 rdf:type schema:PropertyValue
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
64 schema:name Statistics
65 rdf:type schema:DefinedTerm
66 sg:journal.1136216 schema:issn 0010-3616
67 1432-0916
68 schema:name Communications in Mathematical Physics
69 rdf:type schema:Periodical
70 sg:person.01104576776.49 schema:affiliation https://www.grid.ac/institutes/grid.5037.1
71 schema:familyName Aurell
72 schema:givenName Erik
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104576776.49
74 rdf:type schema:Person
75 sg:person.011615073661.47 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
76 schema:familyName Frisch
77 schema:givenName Uriel
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47
79 rdf:type schema:Person
80 sg:person.01241043550.84 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
81 schema:familyName She
82 schema:givenName Zhen-Su
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241043550.84
84 rdf:type schema:Person
85 sg:pub.10.1007/978-94-010-1745-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039474300
86 https://doi.org/10.1007/978-94-010-1745-9
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf02096550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001608199
89 https://doi.org/10.1007/bf02096550
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/cpa.3160030302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006837674
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1017/s0022112079001932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053964767
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1017/s0022112092001782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053754260
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1090/qam/42889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059348553
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1093/mnras/236.2.385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006786135
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1093/mnras/250.2.458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000438447
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physreva.33.1141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060474178
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevlett.56.889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793614
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/revmodphys.61.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839169
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/tbme.1981.324751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061524721
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
112 schema:name Applied and Computational Mathematics, Princeton University, 08544, NJ, USA
113 rdf:type schema:Organization
114 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
115 schema:name Applied and Computational Mathematics, Princeton University, 08544, NJ, USA
116 Observatoire de Nice, CNRS, BP 229, F-06304, Nice Cedex 4, France
117 rdf:type schema:Organization
118 https://www.grid.ac/institutes/grid.5037.1 schema:alternateName Royal Institute of Technology
119 schema:name Department of Mathematics, KTH, Stockholm, Sweden
120 Observatoire de Nice, CNRS, BP 229, F-06304, Nice Cedex 4, France
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...