Effects of changing spatial resolution on the results of landscape pattern analysis using spatial autocorrelation indices View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-02

AUTHORS

Ye Qi, Jianguo Wu

ABSTRACT

Understanding the relationship between pattern and scale is a central issue in landscape ecology. Pattern analysis is necessarily a critical step to achieve this understanding. Pattern and scale are inseparable in theory and in reality. Pattern occurs on different scales, and scale affects pattern to be observed. The objective of our study is to investigate how changing scale might affect the results of landscape pattern analysis using three commonly adopted spatial autocorrelation indices,i.e., Moran Coefficient, Geary Ratio, and Cliff-Ord statistic. The data sets used in this study are spatially referenced digital data sets of topography and biomass in 1972 of Peninsular Malaysia. Our results show that all three autocorrelation indices were scale-dependent. In other words, the degree of spatial autocorrelation measured by these indices vary with the spatial scale on which analysis was performed. While all the data sets show a positive spatial autocorrelation across a range of scales, Moran coefficient and Cliff-Ord statistic decrease and Geary Ratio increases with increasing grain size, indicating an overall decline in the degree of spatial autocorrelation with scale. The effect of changing scale varies in their magnitude and rate of change when different types of landscape data are used. We have also explored why this could happen by examining the formulation of the Moran coefficient. The pattern of change in spatial autocorrelation with scale exhibits threshold behavior,i.e., scale effects fade away after certain spatial scales are reached (for elevation). We recommend that multiple methods be used for pattern analysis whenever feasible, and that scale effects must be taken into account in all spatial analysis. More... »

PAGES

39-49

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02087112

DOI

http://dx.doi.org/10.1007/bf02087112

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053354971


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Scripps Institution of Oceanography", 
          "id": "https://www.grid.ac/institutes/grid.217200.6", 
          "name": [
            "Scripps Institution of Oceanography, University of California at San Diego, 92093-0220, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qi", 
        "givenName": "Ye", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Desert Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.474431.1", 
          "name": [
            "Biological Sciences Center, Desert Research Institute, University of Nevada System, P.O. Box 60220, 89506-0220, Reno, Nevada, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Jianguo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00131172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001161265", 
          "https://doi.org/10.1007/bf00131172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00131172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001161265", 
          "https://doi.org/10.1007/bf00131172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00124663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003576930", 
          "https://doi.org/10.1007/bf00124663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00124663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003576930", 
          "https://doi.org/10.1007/bf00124663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02461491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003841138", 
          "https://doi.org/10.1007/bf02461491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02461491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003841138", 
          "https://doi.org/10.1007/bf02461491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00133311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008408106", 
          "https://doi.org/10.1007/bf00133311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00133311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008408106", 
          "https://doi.org/10.1007/bf00133311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00031693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009083696", 
          "https://doi.org/10.1007/bf00031693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00031693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009083696", 
          "https://doi.org/10.1007/bf00031693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0096-3003(88)90099-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011354612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00131534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012649321", 
          "https://doi.org/10.1007/bf00131534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00131534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012649321", 
          "https://doi.org/10.1007/bf00131534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00135078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014329226", 
          "https://doi.org/10.1007/bf00135078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00135078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014329226", 
          "https://doi.org/10.1007/bf00135078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4742-5_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017549390", 
          "https://doi.org/10.1007/978-1-4612-4742-5_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3800(91)90039-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019411267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3800(91)90039-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019411267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-4632.1992.tb00261.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019625466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-4632.1992.tb00261.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019625466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2937145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023349750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00162741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023695302", 
          "https://doi.org/10.1007/bf00162741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3800(93)90081-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023733727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3800(93)90081-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023733727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1941447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025609808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00048036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026834824", 
          "https://doi.org/10.1007/bf00048036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00048036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026834824", 
          "https://doi.org/10.1007/bf00048036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-2758-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037929073", 
          "https://doi.org/10.1007/978-94-009-2758-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-2758-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037929073", 
          "https://doi.org/10.1007/978-94-009-2758-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00131542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042565240", 
          "https://doi.org/10.1007/bf00131542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00131542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042565240", 
          "https://doi.org/10.1007/bf00131542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0033-0124.1990.00481.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048212740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8363-5_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050802242", 
          "https://doi.org/10.1007/978-1-4613-8363-5_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00137153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053217307", 
          "https://doi.org/10.1007/bf00137153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00137153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053217307", 
          "https://doi.org/10.1007/bf00137153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s0092-8240(05)80414-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054613883", 
          "https://doi.org/10.1016/s0092-8240(05)80414-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1931688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069656105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1939267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069663129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1939924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069663732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3544931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070366951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aob.a083317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083598610"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-02", 
    "datePublishedReg": "1996-02-01", 
    "description": "Understanding the relationship between pattern and scale is a central issue in landscape ecology. Pattern analysis is necessarily a critical step to achieve this understanding. Pattern and scale are inseparable in theory and in reality. Pattern occurs on different scales, and scale affects pattern to be observed. The objective of our study is to investigate how changing scale might affect the results of landscape pattern analysis using three commonly adopted spatial autocorrelation indices,i.e., Moran Coefficient, Geary Ratio, and Cliff-Ord statistic. The data sets used in this study are spatially referenced digital data sets of topography and biomass in 1972 of Peninsular Malaysia. Our results show that all three autocorrelation indices were scale-dependent. In other words, the degree of spatial autocorrelation measured by these indices vary with the spatial scale on which analysis was performed. While all the data sets show a positive spatial autocorrelation across a range of scales, Moran coefficient and Cliff-Ord statistic decrease and Geary Ratio increases with increasing grain size, indicating an overall decline in the degree of spatial autocorrelation with scale. The effect of changing scale varies in their magnitude and rate of change when different types of landscape data are used. We have also explored why this could happen by examining the formulation of the Moran coefficient. The pattern of change in spatial autocorrelation with scale exhibits threshold behavior,i.e., scale effects fade away after certain spatial scales are reached (for elevation). We recommend that multiple methods be used for pattern analysis whenever feasible, and that scale effects must be taken into account in all spatial analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02087112", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043738", 
        "issn": [
          "0921-2973", 
          "1572-9761"
        ], 
        "name": "Landscape Ecology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Effects of changing spatial resolution on the results of landscape pattern analysis using spatial autocorrelation indices", 
    "pagination": "39-49", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fe235b28aaca5d53c106e9fd4e716b18ae5a8639a180d81291e7c5e9731e3c18"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02087112"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053354971"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02087112", 
      "https://app.dimensions.ai/details/publication/pub.1053354971"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118335_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02087112"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02087112'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02087112'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02087112'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02087112'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02087112 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N81f46ca4dce34b52b17be7304b0a3c9c
4 schema:citation sg:pub.10.1007/978-1-4612-4742-5_2
5 sg:pub.10.1007/978-1-4613-8363-5_4
6 sg:pub.10.1007/978-94-009-2758-2
7 sg:pub.10.1007/bf00031693
8 sg:pub.10.1007/bf00048036
9 sg:pub.10.1007/bf00124663
10 sg:pub.10.1007/bf00131172
11 sg:pub.10.1007/bf00131534
12 sg:pub.10.1007/bf00131542
13 sg:pub.10.1007/bf00133311
14 sg:pub.10.1007/bf00135078
15 sg:pub.10.1007/bf00137153
16 sg:pub.10.1007/bf00162741
17 sg:pub.10.1007/bf02461491
18 sg:pub.10.1016/s0092-8240(05)80414-8
19 https://doi.org/10.1016/0096-3003(88)90099-9
20 https://doi.org/10.1016/0304-3800(91)90039-4
21 https://doi.org/10.1016/0304-3800(93)90081-3
22 https://doi.org/10.1093/oxfordjournals.aob.a083317
23 https://doi.org/10.1111/j.0033-0124.1990.00481.x
24 https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
25 https://doi.org/10.2307/1931688
26 https://doi.org/10.2307/1939267
27 https://doi.org/10.2307/1939924
28 https://doi.org/10.2307/1941447
29 https://doi.org/10.2307/2937145
30 https://doi.org/10.2307/3544931
31 schema:datePublished 1996-02
32 schema:datePublishedReg 1996-02-01
33 schema:description Understanding the relationship between pattern and scale is a central issue in landscape ecology. Pattern analysis is necessarily a critical step to achieve this understanding. Pattern and scale are inseparable in theory and in reality. Pattern occurs on different scales, and scale affects pattern to be observed. The objective of our study is to investigate how changing scale might affect the results of landscape pattern analysis using three commonly adopted spatial autocorrelation indices,i.e., Moran Coefficient, Geary Ratio, and Cliff-Ord statistic. The data sets used in this study are spatially referenced digital data sets of topography and biomass in 1972 of Peninsular Malaysia. Our results show that all three autocorrelation indices were scale-dependent. In other words, the degree of spatial autocorrelation measured by these indices vary with the spatial scale on which analysis was performed. While all the data sets show a positive spatial autocorrelation across a range of scales, Moran coefficient and Cliff-Ord statistic decrease and Geary Ratio increases with increasing grain size, indicating an overall decline in the degree of spatial autocorrelation with scale. The effect of changing scale varies in their magnitude and rate of change when different types of landscape data are used. We have also explored why this could happen by examining the formulation of the Moran coefficient. The pattern of change in spatial autocorrelation with scale exhibits threshold behavior,i.e., scale effects fade away after certain spatial scales are reached (for elevation). We recommend that multiple methods be used for pattern analysis whenever feasible, and that scale effects must be taken into account in all spatial analysis.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N0fa76abe819f42f4ae71d5c8d412b934
38 N49ecdfc75a9743b685ec49d22677a510
39 sg:journal.1043738
40 schema:name Effects of changing spatial resolution on the results of landscape pattern analysis using spatial autocorrelation indices
41 schema:pagination 39-49
42 schema:productId N4f0b4aa645044bbe857a2211a5af57fb
43 Na8aaadf32f514ba2af73e8cb16874a4c
44 Nce46693eeef647d9bad93b9716b13f2f
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053354971
46 https://doi.org/10.1007/bf02087112
47 schema:sdDatePublished 2019-04-11T12:06
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N13acbf253c0d4bf49b7004f7775ec915
50 schema:url http://link.springer.com/10.1007/BF02087112
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N0fa76abe819f42f4ae71d5c8d412b934 schema:volumeNumber 11
55 rdf:type schema:PublicationVolume
56 N13acbf253c0d4bf49b7004f7775ec915 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N1a8b2d5f14ed4df295c331f349cd6f56 schema:affiliation https://www.grid.ac/institutes/grid.217200.6
59 schema:familyName Qi
60 schema:givenName Ye
61 rdf:type schema:Person
62 N49ecdfc75a9743b685ec49d22677a510 schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 N4be793b8a0bb4df29ef6c413a4b737a8 rdf:first N5b22ef86219a4ff797ceb9ddfe5afcc9
65 rdf:rest rdf:nil
66 N4f0b4aa645044bbe857a2211a5af57fb schema:name dimensions_id
67 schema:value pub.1053354971
68 rdf:type schema:PropertyValue
69 N5b22ef86219a4ff797ceb9ddfe5afcc9 schema:affiliation https://www.grid.ac/institutes/grid.474431.1
70 schema:familyName Wu
71 schema:givenName Jianguo
72 rdf:type schema:Person
73 N81f46ca4dce34b52b17be7304b0a3c9c rdf:first N1a8b2d5f14ed4df295c331f349cd6f56
74 rdf:rest N4be793b8a0bb4df29ef6c413a4b737a8
75 Na8aaadf32f514ba2af73e8cb16874a4c schema:name doi
76 schema:value 10.1007/bf02087112
77 rdf:type schema:PropertyValue
78 Nce46693eeef647d9bad93b9716b13f2f schema:name readcube_id
79 schema:value fe235b28aaca5d53c106e9fd4e716b18ae5a8639a180d81291e7c5e9731e3c18
80 rdf:type schema:PropertyValue
81 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
82 schema:name Engineering
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
85 schema:name Geomatic Engineering
86 rdf:type schema:DefinedTerm
87 sg:journal.1043738 schema:issn 0921-2973
88 1572-9761
89 schema:name Landscape Ecology
90 rdf:type schema:Periodical
91 sg:pub.10.1007/978-1-4612-4742-5_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017549390
92 https://doi.org/10.1007/978-1-4612-4742-5_2
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-1-4613-8363-5_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050802242
95 https://doi.org/10.1007/978-1-4613-8363-5_4
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-94-009-2758-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037929073
98 https://doi.org/10.1007/978-94-009-2758-2
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf00031693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009083696
101 https://doi.org/10.1007/bf00031693
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf00048036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026834824
104 https://doi.org/10.1007/bf00048036
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf00124663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003576930
107 https://doi.org/10.1007/bf00124663
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf00131172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001161265
110 https://doi.org/10.1007/bf00131172
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf00131534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012649321
113 https://doi.org/10.1007/bf00131534
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf00131542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042565240
116 https://doi.org/10.1007/bf00131542
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf00133311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008408106
119 https://doi.org/10.1007/bf00133311
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf00135078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014329226
122 https://doi.org/10.1007/bf00135078
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf00137153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053217307
125 https://doi.org/10.1007/bf00137153
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf00162741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023695302
128 https://doi.org/10.1007/bf00162741
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/bf02461491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003841138
131 https://doi.org/10.1007/bf02461491
132 rdf:type schema:CreativeWork
133 sg:pub.10.1016/s0092-8240(05)80414-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054613883
134 https://doi.org/10.1016/s0092-8240(05)80414-8
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0096-3003(88)90099-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011354612
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0304-3800(91)90039-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019411267
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0304-3800(93)90081-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023733727
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/oxfordjournals.aob.a083317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083598610
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1111/j.0033-0124.1990.00481.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048212740
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1111/j.1538-4632.1992.tb00261.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019625466
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2307/1931688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069656105
149 rdf:type schema:CreativeWork
150 https://doi.org/10.2307/1939267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069663129
151 rdf:type schema:CreativeWork
152 https://doi.org/10.2307/1939924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069663732
153 rdf:type schema:CreativeWork
154 https://doi.org/10.2307/1941447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025609808
155 rdf:type schema:CreativeWork
156 https://doi.org/10.2307/2937145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023349750
157 rdf:type schema:CreativeWork
158 https://doi.org/10.2307/3544931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070366951
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.217200.6 schema:alternateName Scripps Institution of Oceanography
161 schema:name Scripps Institution of Oceanography, University of California at San Diego, 92093-0220, La Jolla, CA, USA
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.474431.1 schema:alternateName Desert Research Institute
164 schema:name Biological Sciences Center, Desert Research Institute, University of Nevada System, P.O. Box 60220, 89506-0220, Reno, Nevada, USA
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...