Correspondence factor analysis: An outline of its method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1975-02

AUTHORS

H. Teil

ABSTRACT

Correspondence factor analysis is a multivariate technique that may be applied to any type of data and to any number of data points. It detects associations and oppositions existing between subjects and objects, measuring their contribution to the total inertia for each factor. The probabilistic character of the data matrix is taken into consideration, and together with the principle of distributional equivalence, results in stability. The projection of the subjects and the objects onto the same set of factorial axes enables two-dimensional graphs to be drawn which offer aid in the interpretation of the results. More... »

PAGES

3-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02080630

DOI

http://dx.doi.org/10.1007/bf02080630

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003812284


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Centre d'Informatique G\u00e9ologique, Ecole Nationale Sup\u00e9rieure des Mines de Paris Fontainebleau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teil", 
        "givenName": "H.", 
        "id": "sg:person.013576657337.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576657337.59"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1975-02", 
    "datePublishedReg": "1975-02-01", 
    "description": "Correspondence factor analysis is a multivariate technique that may be applied to any type of data and to any number of data points. It detects associations and oppositions existing between subjects and objects, measuring their contribution to the total inertia for each factor. The probabilistic character of the data matrix is taken into consideration, and together with the principle of distributional equivalence, results in stability. The projection of the subjects and the objects onto the same set of factorial axes enables two-dimensional graphs to be drawn which offer aid in the interpretation of the results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02080630", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1039818", 
        "issn": [
          "1874-8961", 
          "1874-8953"
        ], 
        "name": "Mathematical Geosciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Correspondence factor analysis: An outline of its method", 
    "pagination": "3-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "12297874c02e49b20f05274dc0160b9db78eaca1010f7dce7fa484fd8d1eed19"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02080630"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003812284"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02080630", 
      "https://app.dimensions.ai/details/publication/pub.1003812284"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02080630"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02080630'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02080630'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02080630'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02080630'


 

This table displays all metadata directly associated to this object as RDF triples.

60 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02080630 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf8720737179c4003ab08d7a54f87c1ad
4 schema:datePublished 1975-02
5 schema:datePublishedReg 1975-02-01
6 schema:description Correspondence factor analysis is a multivariate technique that may be applied to any type of data and to any number of data points. It detects associations and oppositions existing between subjects and objects, measuring their contribution to the total inertia for each factor. The probabilistic character of the data matrix is taken into consideration, and together with the principle of distributional equivalence, results in stability. The projection of the subjects and the objects onto the same set of factorial axes enables two-dimensional graphs to be drawn which offer aid in the interpretation of the results.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N98576016d6ce4a96bb91c547508ce86a
11 Na76afbd8cd8246f0af70c2b7bbd8a3cc
12 sg:journal.1039818
13 schema:name Correspondence factor analysis: An outline of its method
14 schema:pagination 3-12
15 schema:productId N394a5ccdb8ce4c8ca5c2d54adde36d44
16 N3bdd313c699d471ca674904d70837964
17 N72ed515ed6fb44d49049eaa261f84f2c
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003812284
19 https://doi.org/10.1007/bf02080630
20 schema:sdDatePublished 2019-04-10T14:57
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N858982a361444e48b79b67d40905fb37
23 schema:url http://link.springer.com/10.1007/BF02080630
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N394a5ccdb8ce4c8ca5c2d54adde36d44 schema:name doi
28 schema:value 10.1007/bf02080630
29 rdf:type schema:PropertyValue
30 N3bdd313c699d471ca674904d70837964 schema:name readcube_id
31 schema:value 12297874c02e49b20f05274dc0160b9db78eaca1010f7dce7fa484fd8d1eed19
32 rdf:type schema:PropertyValue
33 N72ed515ed6fb44d49049eaa261f84f2c schema:name dimensions_id
34 schema:value pub.1003812284
35 rdf:type schema:PropertyValue
36 N858982a361444e48b79b67d40905fb37 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N98576016d6ce4a96bb91c547508ce86a schema:issueNumber 1
39 rdf:type schema:PublicationIssue
40 Na76afbd8cd8246f0af70c2b7bbd8a3cc schema:volumeNumber 7
41 rdf:type schema:PublicationVolume
42 Ndbebcdaaad72430eb25f1600aa82c989 schema:name Centre d'Informatique Géologique, Ecole Nationale Supérieure des Mines de Paris Fontainebleau, France
43 rdf:type schema:Organization
44 Nf8720737179c4003ab08d7a54f87c1ad rdf:first sg:person.013576657337.59
45 rdf:rest rdf:nil
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1039818 schema:issn 1874-8953
53 1874-8961
54 schema:name Mathematical Geosciences
55 rdf:type schema:Periodical
56 sg:person.013576657337.59 schema:affiliation Ndbebcdaaad72430eb25f1600aa82c989
57 schema:familyName Teil
58 schema:givenName H.
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576657337.59
60 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...