Ontology type: schema:ScholarlyArticle
1997-01
AUTHORSB. Fazekas, G. Molnár, T. Belgya, L. Dabolczi, A. Simonits
ABSTRACTIn short time activation analysis prompt gamma-activation analysis and in high rate γ-ray spectroscopy in general, the shape parameters for peaks and back ground usually vary, rendering spectrum evaluation codes based on a fixed shape calibration unsuitable. An interactive version of the well-known, fully automatic γ-ray spectrum analysis code HYPERMET has been developed in C ++ for the IBM-PC. It runs under MS-DOS, in conventional memory, and can handle up to 16k-channel spectra, recorded with CANBERRA's System 100 and AccuSpec and with ORTEC's ACE plug-in MCA cards. A Windows-like graphics environment is provided with mouse controlled pull-down menus, pop-up windows and rubber band expansion. All basic features of HYPERMET such as fully automatic peak search, nonlinear fitting of multiplets with automatically adjusted Gaussian peak widths exponential tails and a complex background function have been retained. All details of the fitting procedure are recorded in a data base, hence any fitted region can be retrieved and modified interactively, even after a fully automatic spectrum evaluation. The program also provides an output peak list in SAMPO90 format for further processing. The latter format is widely used in a number of sample analysis programs such as KAYZERO a software package fork0 standardization in neutron activation analysis. More... »
PAGES271-277
http://scigraph.springernature.com/pub.10.1007/bf02034477
DOIhttp://dx.doi.org/10.1007/bf02034477
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1012869991
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Analytical Chemistry",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Inorganic Chemistry",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Isotopes, POB 77, H-1525, Budapest, Hungary",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute of Isotopes, POB 77, H-1525, Budapest, Hungary"
],
"type": "Organization"
},
"familyName": "Fazekas",
"givenName": "B.",
"id": "sg:person.013147402175.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013147402175.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Isotopes, POB 77, H-1525, Budapest, Hungary",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute of Isotopes, POB 77, H-1525, Budapest, Hungary"
],
"type": "Organization"
},
"familyName": "Moln\u00e1r",
"givenName": "G.",
"id": "sg:person.0645274153.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645274153.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Isotopes, POB 77, H-1525, Budapest, Hungary",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute of Isotopes, POB 77, H-1525, Budapest, Hungary"
],
"type": "Organization"
},
"familyName": "Belgya",
"givenName": "T.",
"id": "sg:person.0605627053.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605627053.27"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Isotopes, POB 77, H-1525, Budapest, Hungary",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute of Isotopes, POB 77, H-1525, Budapest, Hungary"
],
"type": "Organization"
},
"familyName": "Dabolczi",
"givenName": "L.",
"id": "sg:person.015652535663.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015652535663.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "KFKI Atomic Energy Research Institute, POB 49, H-1525, Budapest, Hungary",
"id": "http://www.grid.ac/institutes/grid.4987.2",
"name": [
"KFKI Atomic Energy Research Institute, POB 49, H-1525, Budapest, Hungary"
],
"type": "Organization"
},
"familyName": "Simonits",
"givenName": "A.",
"id": "sg:person.01032723415.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032723415.17"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02041678",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048622483",
"https://doi.org/10.1007/bf02041678"
],
"type": "CreativeWork"
}
],
"datePublished": "1997-01",
"datePublishedReg": "1997-01-01",
"description": "In short time activation analysis prompt gamma-activation analysis and in high rate \u03b3-ray spectroscopy in general, the shape parameters for peaks and back ground usually vary, rendering spectrum evaluation codes based on a fixed shape calibration unsuitable. An interactive version of the well-known, fully automatic \u03b3-ray spectrum analysis code HYPERMET has been developed in C ++ for the IBM-PC. It runs under MS-DOS, in conventional memory, and can handle up to 16k-channel spectra, recorded with CANBERRA's System 100 and AccuSpec and with ORTEC's ACE plug-in MCA cards. A Windows-like graphics environment is provided with mouse controlled pull-down menus, pop-up windows and rubber band expansion. All basic features of HYPERMET such as fully automatic peak search, nonlinear fitting of multiplets with automatically adjusted Gaussian peak widths exponential tails and a complex background function have been retained. All details of the fitting procedure are recorded in a data base, hence any fitted region can be retrieved and modified interactively, even after a fully automatic spectrum evaluation. The program also provides an output peak list in SAMPO90 format for further processing. The latter format is widely used in a number of sample analysis programs such as KAYZERO a software package fork0 standardization in neutron activation analysis.",
"genre": "article",
"id": "sg:pub.10.1007/bf02034477",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1094634",
"issn": [
"0236-5731",
"1588-2780"
],
"name": "Journal of Radioanalytical and Nuclear Chemistry",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "215"
}
],
"keywords": [
"graphics environment",
"MS-DOS",
"automatic analysis",
"IBM PC",
"interactive version",
"peak search",
"further processing",
"conventional memory",
"band expansion",
"system 100",
"evaluation code",
"data base",
"format",
"peak lists",
"analysis program",
"latter format",
"basic features",
"complex gamma-ray spectra",
"cards",
"background function",
"code",
"back ground",
"menu",
"processing",
"nonlinear fitting",
"search",
"environment",
"memory",
"version",
"features",
"shape calibration",
"program",
"standardization",
"shape parameters",
"list",
"plug",
"spectrum evaluation",
"window",
"base",
"calibration",
"detail",
"fitting",
"evaluation",
"number",
"analysis",
"gamma-ray spectra",
"parameters",
"Kayzero",
"function",
"procedure",
"ground",
"fitting procedure",
"expansion",
"exponential tail",
"region",
"spectra",
"rate \u03b3",
"prompt gamma activation analysis",
"gamma activation analysis",
"multiplets",
"ray spectroscopy",
"tail",
"peak",
"activation analysis",
"neutron activation analysis",
"spectroscopy",
"mice"
],
"name": "Introducing HYPERMET-PC for automatic analysis of complex gamma-ray spectra",
"pagination": "271-277",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1012869991"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf02034477"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf02034477",
"https://app.dimensions.ai/details/publication/pub.1012869991"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:19",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_266.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf02034477"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02034477'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02034477'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02034477'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02034477'
This table displays all metadata directly associated to this object as RDF triples.
168 TRIPLES
22 PREDICATES
96 URIs
85 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf02034477 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0301 |
3 | ″ | ″ | anzsrc-for:0302 |
4 | ″ | ″ | anzsrc-for:0306 |
5 | ″ | schema:author | N5d4f88a3e315492ba99a1f45562dd8eb |
6 | ″ | schema:citation | sg:pub.10.1007/bf02041678 |
7 | ″ | schema:datePublished | 1997-01 |
8 | ″ | schema:datePublishedReg | 1997-01-01 |
9 | ″ | schema:description | In short time activation analysis prompt gamma-activation analysis and in high rate γ-ray spectroscopy in general, the shape parameters for peaks and back ground usually vary, rendering spectrum evaluation codes based on a fixed shape calibration unsuitable. An interactive version of the well-known, fully automatic γ-ray spectrum analysis code HYPERMET has been developed in C ++ for the IBM-PC. It runs under MS-DOS, in conventional memory, and can handle up to 16k-channel spectra, recorded with CANBERRA's System 100 and AccuSpec and with ORTEC's ACE plug-in MCA cards. A Windows-like graphics environment is provided with mouse controlled pull-down menus, pop-up windows and rubber band expansion. All basic features of HYPERMET such as fully automatic peak search, nonlinear fitting of multiplets with automatically adjusted Gaussian peak widths exponential tails and a complex background function have been retained. All details of the fitting procedure are recorded in a data base, hence any fitted region can be retrieved and modified interactively, even after a fully automatic spectrum evaluation. The program also provides an output peak list in SAMPO90 format for further processing. The latter format is widely used in a number of sample analysis programs such as KAYZERO a software package fork0 standardization in neutron activation analysis. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N2d82a0fda134466aabd58e796f52dbc4 |
14 | ″ | ″ | Nf3e6a12671f94950bb3d5172942d45e7 |
15 | ″ | ″ | sg:journal.1094634 |
16 | ″ | schema:keywords | IBM PC |
17 | ″ | ″ | Kayzero |
18 | ″ | ″ | MS-DOS |
19 | ″ | ″ | activation analysis |
20 | ″ | ″ | analysis |
21 | ″ | ″ | analysis program |
22 | ″ | ″ | automatic analysis |
23 | ″ | ″ | back ground |
24 | ″ | ″ | background function |
25 | ″ | ″ | band expansion |
26 | ″ | ″ | base |
27 | ″ | ″ | basic features |
28 | ″ | ″ | calibration |
29 | ″ | ″ | cards |
30 | ″ | ″ | code |
31 | ″ | ″ | complex gamma-ray spectra |
32 | ″ | ″ | conventional memory |
33 | ″ | ″ | data base |
34 | ″ | ″ | detail |
35 | ″ | ″ | environment |
36 | ″ | ″ | evaluation |
37 | ″ | ″ | evaluation code |
38 | ″ | ″ | expansion |
39 | ″ | ″ | exponential tail |
40 | ″ | ″ | features |
41 | ″ | ″ | fitting |
42 | ″ | ″ | fitting procedure |
43 | ″ | ″ | format |
44 | ″ | ″ | function |
45 | ″ | ″ | further processing |
46 | ″ | ″ | gamma activation analysis |
47 | ″ | ″ | gamma-ray spectra |
48 | ″ | ″ | graphics environment |
49 | ″ | ″ | ground |
50 | ″ | ″ | interactive version |
51 | ″ | ″ | latter format |
52 | ″ | ″ | list |
53 | ″ | ″ | memory |
54 | ″ | ″ | menu |
55 | ″ | ″ | mice |
56 | ″ | ″ | multiplets |
57 | ″ | ″ | neutron activation analysis |
58 | ″ | ″ | nonlinear fitting |
59 | ″ | ″ | number |
60 | ″ | ″ | parameters |
61 | ″ | ″ | peak |
62 | ″ | ″ | peak lists |
63 | ″ | ″ | peak search |
64 | ″ | ″ | plug |
65 | ″ | ″ | procedure |
66 | ″ | ″ | processing |
67 | ″ | ″ | program |
68 | ″ | ″ | prompt gamma activation analysis |
69 | ″ | ″ | rate γ |
70 | ″ | ″ | ray spectroscopy |
71 | ″ | ″ | region |
72 | ″ | ″ | search |
73 | ″ | ″ | shape calibration |
74 | ″ | ″ | shape parameters |
75 | ″ | ″ | spectra |
76 | ″ | ″ | spectroscopy |
77 | ″ | ″ | spectrum evaluation |
78 | ″ | ″ | standardization |
79 | ″ | ″ | system 100 |
80 | ″ | ″ | tail |
81 | ″ | ″ | version |
82 | ″ | ″ | window |
83 | ″ | schema:name | Introducing HYPERMET-PC for automatic analysis of complex gamma-ray spectra |
84 | ″ | schema:pagination | 271-277 |
85 | ″ | schema:productId | N4454c51445ce4911bae037335d038491 |
86 | ″ | ″ | N9b0d1ddb45c2466297d5332c5fd64f14 |
87 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012869991 |
88 | ″ | ″ | https://doi.org/10.1007/bf02034477 |
89 | ″ | schema:sdDatePublished | 2022-05-20T07:19 |
90 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
91 | ″ | schema:sdPublisher | N2edbe05086904c81933744c027a5e479 |
92 | ″ | schema:url | https://doi.org/10.1007/bf02034477 |
93 | ″ | sgo:license | sg:explorer/license/ |
94 | ″ | sgo:sdDataset | articles |
95 | ″ | rdf:type | schema:ScholarlyArticle |
96 | N08339a67ca7240119a2b1f4ba116acc7 | rdf:first | sg:person.015652535663.46 |
97 | ″ | rdf:rest | Nea2b080d7d834d4fa671ae2f64a17118 |
98 | N2d82a0fda134466aabd58e796f52dbc4 | schema:issueNumber | 2 |
99 | ″ | rdf:type | schema:PublicationIssue |
100 | N2edbe05086904c81933744c027a5e479 | schema:name | Springer Nature - SN SciGraph project |
101 | ″ | rdf:type | schema:Organization |
102 | N4454c51445ce4911bae037335d038491 | schema:name | doi |
103 | ″ | schema:value | 10.1007/bf02034477 |
104 | ″ | rdf:type | schema:PropertyValue |
105 | N5d4f88a3e315492ba99a1f45562dd8eb | rdf:first | sg:person.013147402175.31 |
106 | ″ | rdf:rest | Ne1bbdfd301ee4205970c843a08abb46b |
107 | N9b0d1ddb45c2466297d5332c5fd64f14 | schema:name | dimensions_id |
108 | ″ | schema:value | pub.1012869991 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | Nd4dc85e684084aa585c9b3ea4ef3545d | rdf:first | sg:person.0605627053.27 |
111 | ″ | rdf:rest | N08339a67ca7240119a2b1f4ba116acc7 |
112 | Ne1bbdfd301ee4205970c843a08abb46b | rdf:first | sg:person.0645274153.03 |
113 | ″ | rdf:rest | Nd4dc85e684084aa585c9b3ea4ef3545d |
114 | Nea2b080d7d834d4fa671ae2f64a17118 | rdf:first | sg:person.01032723415.17 |
115 | ″ | rdf:rest | rdf:nil |
116 | Nf3e6a12671f94950bb3d5172942d45e7 | schema:volumeNumber | 215 |
117 | ″ | rdf:type | schema:PublicationVolume |
118 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
119 | ″ | schema:name | Chemical Sciences |
120 | ″ | rdf:type | schema:DefinedTerm |
121 | anzsrc-for:0301 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Analytical Chemistry |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | anzsrc-for:0302 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Inorganic Chemistry |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Physical Chemistry (incl. Structural) |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | sg:journal.1094634 | schema:issn | 0236-5731 |
131 | ″ | ″ | 1588-2780 |
132 | ″ | schema:name | Journal of Radioanalytical and Nuclear Chemistry |
133 | ″ | schema:publisher | Springer Nature |
134 | ″ | rdf:type | schema:Periodical |
135 | sg:person.01032723415.17 | schema:affiliation | grid-institutes:grid.4987.2 |
136 | ″ | schema:familyName | Simonits |
137 | ″ | schema:givenName | A. |
138 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032723415.17 |
139 | ″ | rdf:type | schema:Person |
140 | sg:person.013147402175.31 | schema:affiliation | grid-institutes:None |
141 | ″ | schema:familyName | Fazekas |
142 | ″ | schema:givenName | B. |
143 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013147402175.31 |
144 | ″ | rdf:type | schema:Person |
145 | sg:person.015652535663.46 | schema:affiliation | grid-institutes:None |
146 | ″ | schema:familyName | Dabolczi |
147 | ″ | schema:givenName | L. |
148 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015652535663.46 |
149 | ″ | rdf:type | schema:Person |
150 | sg:person.0605627053.27 | schema:affiliation | grid-institutes:None |
151 | ″ | schema:familyName | Belgya |
152 | ″ | schema:givenName | T. |
153 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605627053.27 |
154 | ″ | rdf:type | schema:Person |
155 | sg:person.0645274153.03 | schema:affiliation | grid-institutes:None |
156 | ″ | schema:familyName | Molnár |
157 | ″ | schema:givenName | G. |
158 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645274153.03 |
159 | ″ | rdf:type | schema:Person |
160 | sg:pub.10.1007/bf02041678 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048622483 |
161 | ″ | ″ | https://doi.org/10.1007/bf02041678 |
162 | ″ | rdf:type | schema:CreativeWork |
163 | grid-institutes:None | schema:alternateName | Institute of Isotopes, POB 77, H-1525, Budapest, Hungary |
164 | ″ | schema:name | Institute of Isotopes, POB 77, H-1525, Budapest, Hungary |
165 | ″ | rdf:type | schema:Organization |
166 | grid-institutes:grid.4987.2 | schema:alternateName | KFKI Atomic Energy Research Institute, POB 49, H-1525, Budapest, Hungary |
167 | ″ | schema:name | KFKI Atomic Energy Research Institute, POB 49, H-1525, Budapest, Hungary |
168 | ″ | rdf:type | schema:Organization |