Clustering the science citation index using co-citations. II. Mapping science View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-11

AUTHORS

H. Small, E. Sweeney, E. Greenlee

ABSTRACT

Previous attempts to map science using the co-citation clustering methodology are reviewed, and their shortcomings analyzed. Two enhancements of the methodology presented in Part I of the paper-fractional citation counting and variable level clustering—are briefly described and a third enhancement, the iterative clustering of clusters, is introduced. When combined, these three techniques improve our ability to generate comprehensive and representative mappings of science across the multidisciplinaryScience Citation Index (SCI) data base. Results of a four step analysis of the 1979SCI are presented, and the resulting map at the fourth iteration is described in detail. The map shows a tightly integrated network of approximate disciplinary regions, unique in that for the first time links between mathematics and biomedical science have brought about a closure of the previously linear arrangement of disciplines. Disciplinary balance between biomedical and physical science has improved, and the appearance of less cited subject areas, such as mathematics and applied science, makes this map the most comprehensive one yet produced by the co-citation methodology. Remaining problems and goals for future work are discussed. More... »

PAGES

321-340

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02018057

DOI

http://dx.doi.org/10.1007/bf02018057

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020802228


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute for Scientific Information, University City Science Center, 3501 Market Street, 19104, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Small", 
        "givenName": "H.", 
        "id": "sg:person.01330775630.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330775630.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Scientific Information, University City Science Center, 3501 Market Street, 19104, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sweeney", 
        "givenName": "E.", 
        "id": "sg:person.012321404233.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012321404233.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Scientific Information, University City Science Center, 3501 Market Street, 19104, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greenlee", 
        "givenName": "E.", 
        "id": "sg:person.015653547227.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015653547227.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1108/eb026731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000332757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02017157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020133806", 
          "https://doi.org/10.1007/bf02017157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02017157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020133806", 
          "https://doi.org/10.1007/bf02017157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0024051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024827574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/320610.320648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036823341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/030631277400400402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043504357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/030631277400400402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043504357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044215102", 
          "https://doi.org/10.1007/bf02289565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044215102", 
          "https://doi.org/10.1007/bf02289565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.4630340304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052316877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpc.1979.6501740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061751637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.188.4187.429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062511380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/030631277400400102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063809934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/030631277400400102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063809934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5771/0943-7444-1976-2-67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106732609"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1985-11", 
    "datePublishedReg": "1985-11-01", 
    "description": "Previous attempts to map science using the co-citation clustering methodology are reviewed, and their shortcomings analyzed. Two enhancements of the methodology presented in Part I of the paper-fractional citation counting and variable level clustering\u2014are briefly described and a third enhancement, the iterative clustering of clusters, is introduced. When combined, these three techniques improve our ability to generate comprehensive and representative mappings of science across the multidisciplinaryScience Citation Index (SCI) data base. Results of a four step analysis of the 1979SCI are presented, and the resulting map at the fourth iteration is described in detail. The map shows a tightly integrated network of approximate disciplinary regions, unique in that for the first time links between mathematics and biomedical science have brought about a closure of the previously linear arrangement of disciplines. Disciplinary balance between biomedical and physical science has improved, and the appearance of less cited subject areas, such as mathematics and applied science, makes this map the most comprehensive one yet produced by the co-citation methodology. Remaining problems and goals for future work are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02018057", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1089056", 
        "issn": [
          "0138-9130", 
          "1588-2861"
        ], 
        "name": "Scientometrics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Clustering the science citation index using co-citations. II. Mapping science", 
    "pagination": "321-340", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "631dc43d81d21c4a3b03239e66413c3dc88a74b01bb0011de0d581703557545d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02018057"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020802228"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02018057", 
      "https://app.dimensions.ai/details/publication/pub.1020802228"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29219_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02018057"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02018057'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02018057'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02018057'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02018057'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02018057 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4220e45c50f642e4b26f7295ad25288f
4 schema:citation sg:pub.10.1007/bf02017157
5 sg:pub.10.1007/bf02289565
6 https://doi.org/10.1002/asi.4630340304
7 https://doi.org/10.1037/h0024051
8 https://doi.org/10.1108/eb026731
9 https://doi.org/10.1109/tpc.1979.6501740
10 https://doi.org/10.1126/science.188.4187.429
11 https://doi.org/10.1145/320610.320648
12 https://doi.org/10.1177/030631277400400102
13 https://doi.org/10.1177/030631277400400402
14 https://doi.org/10.5771/0943-7444-1976-2-67
15 schema:datePublished 1985-11
16 schema:datePublishedReg 1985-11-01
17 schema:description Previous attempts to map science using the co-citation clustering methodology are reviewed, and their shortcomings analyzed. Two enhancements of the methodology presented in Part I of the paper-fractional citation counting and variable level clustering—are briefly described and a third enhancement, the iterative clustering of clusters, is introduced. When combined, these three techniques improve our ability to generate comprehensive and representative mappings of science across the multidisciplinaryScience Citation Index (SCI) data base. Results of a four step analysis of the 1979SCI are presented, and the resulting map at the fourth iteration is described in detail. The map shows a tightly integrated network of approximate disciplinary regions, unique in that for the first time links between mathematics and biomedical science have brought about a closure of the previously linear arrangement of disciplines. Disciplinary balance between biomedical and physical science has improved, and the appearance of less cited subject areas, such as mathematics and applied science, makes this map the most comprehensive one yet produced by the co-citation methodology. Remaining problems and goals for future work are discussed.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N194ac83509c64dbfac3cfbb6438a0ae0
22 N5ab6bd239fad446ea70ad417fd5092d9
23 sg:journal.1089056
24 schema:name Clustering the science citation index using co-citations. II. Mapping science
25 schema:pagination 321-340
26 schema:productId N34db72389efd46bca16b144ef0d68a45
27 N8d6da62344104e1ebcd5b6edb8631eca
28 Na2d6ee0a87474bc5bf42b6e26b322542
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020802228
30 https://doi.org/10.1007/bf02018057
31 schema:sdDatePublished 2019-04-11T11:57
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nf87ceb0355f64574b4476ec1c58b3038
34 schema:url http://link.springer.com/10.1007/BF02018057
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N06045ba9109a49f4bddf1b47e3a2da27 schema:name Institute for Scientific Information, University City Science Center, 3501 Market Street, 19104, Philadelphia, PA, USA
39 rdf:type schema:Organization
40 N194ac83509c64dbfac3cfbb6438a0ae0 schema:issueNumber 5-6
41 rdf:type schema:PublicationIssue
42 N34db72389efd46bca16b144ef0d68a45 schema:name readcube_id
43 schema:value 631dc43d81d21c4a3b03239e66413c3dc88a74b01bb0011de0d581703557545d
44 rdf:type schema:PropertyValue
45 N4220e45c50f642e4b26f7295ad25288f rdf:first sg:person.01330775630.03
46 rdf:rest N77a41e2788b64eed8312550072219b8d
47 N5ab6bd239fad446ea70ad417fd5092d9 schema:volumeNumber 8
48 rdf:type schema:PublicationVolume
49 N77a41e2788b64eed8312550072219b8d rdf:first sg:person.012321404233.78
50 rdf:rest Nc966465c54494eab80a1bc9c1e61072e
51 N8d6da62344104e1ebcd5b6edb8631eca schema:name dimensions_id
52 schema:value pub.1020802228
53 rdf:type schema:PropertyValue
54 N987c61b52c1e46d29f3127f09cd861ea schema:name Institute for Scientific Information, University City Science Center, 3501 Market Street, 19104, Philadelphia, PA, USA
55 rdf:type schema:Organization
56 Na2d6ee0a87474bc5bf42b6e26b322542 schema:name doi
57 schema:value 10.1007/bf02018057
58 rdf:type schema:PropertyValue
59 Na5489e13ebc841edad20934d1b39cb5a schema:name Institute for Scientific Information, University City Science Center, 3501 Market Street, 19104, Philadelphia, PA, USA
60 rdf:type schema:Organization
61 Nc966465c54494eab80a1bc9c1e61072e rdf:first sg:person.015653547227.07
62 rdf:rest rdf:nil
63 Nf87ceb0355f64574b4476ec1c58b3038 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
66 schema:name Information and Computing Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
69 schema:name Artificial Intelligence and Image Processing
70 rdf:type schema:DefinedTerm
71 sg:journal.1089056 schema:issn 0138-9130
72 1588-2861
73 schema:name Scientometrics
74 rdf:type schema:Periodical
75 sg:person.012321404233.78 schema:affiliation Na5489e13ebc841edad20934d1b39cb5a
76 schema:familyName Sweeney
77 schema:givenName E.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012321404233.78
79 rdf:type schema:Person
80 sg:person.01330775630.03 schema:affiliation N06045ba9109a49f4bddf1b47e3a2da27
81 schema:familyName Small
82 schema:givenName H.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330775630.03
84 rdf:type schema:Person
85 sg:person.015653547227.07 schema:affiliation N987c61b52c1e46d29f3127f09cd861ea
86 schema:familyName Greenlee
87 schema:givenName E.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015653547227.07
89 rdf:type schema:Person
90 sg:pub.10.1007/bf02017157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020133806
91 https://doi.org/10.1007/bf02017157
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf02289565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044215102
94 https://doi.org/10.1007/bf02289565
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1002/asi.4630340304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052316877
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1037/h0024051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024827574
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1108/eb026731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000332757
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1109/tpc.1979.6501740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061751637
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1126/science.188.4187.429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062511380
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1145/320610.320648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036823341
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1177/030631277400400102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063809934
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1177/030631277400400402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043504357
111 rdf:type schema:CreativeWork
112 https://doi.org/10.5771/0943-7444-1976-2-67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106732609
113 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...