Volume relaxation in polymers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1966-12

AUTHORS

L. C. E. Struik

ABSTRACT

Volume relaxation and related phenomena in the glass transition of polymers are discussed. During volume relaxation, the molecular transport mobility changes. First, this in principle implies non-linearity of the volume relaxation process itself. The apparent contradiction of this fact with the linearity domain found experimentally byGoldbach (1) could be explained. Secondly, during volume relaxation the viscoelastic processes change their location in time scale, due to the change in molecular transport mobility. This is demonstrated by experimental results for poly(styrene). The change of mechanical properties during volume relaxation strongly increased with a decrease in frequency of the mechanical deformation. Consequently one should also be careful with mechanical measurements in the glass transition range, especially when performed at lower frequencies.A semi-automatic method to perform simultaneously a large series of isothermal volume relaxation measurements is presented. More... »

PAGES

303-311

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02009739

DOI

http://dx.doi.org/10.1007/bf02009739

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006519836


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centraal Laboratorium TNO, Delft, Niederlande", 
          "id": "http://www.grid.ac/institutes/grid.4858.1", 
          "name": [
            "Centraal Laboratorium TNO, Delft, Niederlande"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Struik", 
        "givenName": "L. C. E.", 
        "id": "sg:person.013767046651.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013767046651.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02009736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008249000", 
          "https://doi.org/10.1007/bf02009736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02009734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045114832", 
          "https://doi.org/10.1007/bf02009734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02009733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010755040", 
          "https://doi.org/10.1007/bf02009733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0050366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052190484", 
          "https://doi.org/10.1007/bfb0050366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01797353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038914395", 
          "https://doi.org/10.1007/bf01797353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01500380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033235347", 
          "https://doi.org/10.1007/bf01500380"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1966-12", 
    "datePublishedReg": "1966-12-01", 
    "description": "Volume relaxation and related phenomena in the glass transition of polymers are discussed. During volume relaxation, the molecular transport mobility changes. First, this in principle implies non-linearity of the volume relaxation process itself. The apparent contradiction of this fact with the linearity domain found experimentally byGoldbach (1) could be explained. Secondly, during volume relaxation the viscoelastic processes change their location in time scale, due to the change in molecular transport mobility. This is demonstrated by experimental results for poly(styrene). The change of mechanical properties during volume relaxation strongly increased with a decrease in frequency of the mechanical deformation. Consequently one should also be careful with mechanical measurements in the glass transition range, especially when performed at lower frequencies.A semi-automatic method to perform simultaneously a large series of isothermal volume relaxation measurements is presented.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02009739", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050722", 
        "issn": [
          "0035-4511", 
          "1435-1528"
        ], 
        "name": "Rheologica Acta", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "volume relaxation", 
      "volume relaxation process", 
      "mechanical properties", 
      "mechanical deformation", 
      "mechanical measurements", 
      "viscoelastic processes", 
      "glass transition range", 
      "volume relaxation measurements", 
      "transition range", 
      "glass transition", 
      "transport mobility", 
      "experimental results", 
      "polymers", 
      "linearity domain", 
      "deformation", 
      "relaxation processes", 
      "low frequency", 
      "semi-automatic method", 
      "measurements", 
      "related phenomena", 
      "process", 
      "time scales", 
      "mobility changes", 
      "properties", 
      "relaxation measurements", 
      "relaxation", 
      "frequency", 
      "phenomenon", 
      "mobility", 
      "range", 
      "method", 
      "location", 
      "principles", 
      "results", 
      "scale", 
      "transition", 
      "changes", 
      "decrease", 
      "series", 
      "domain", 
      "fact", 
      "apparent contradiction", 
      "contradiction", 
      "large series", 
      "molecular transport mobility changes", 
      "transport mobility changes", 
      "byGoldbach", 
      "molecular transport mobility", 
      "isothermal volume relaxation measurements"
    ], 
    "name": "Volume relaxation in polymers", 
    "pagination": "303-311", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006519836"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02009739"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02009739", 
      "https://app.dimensions.ai/details/publication/pub.1006519836"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_76.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02009739"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02009739'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02009739'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02009739'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02009739'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      22 PREDICATES      83 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02009739 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 anzsrc-for:0913
4 anzsrc-for:0915
5 schema:author N530b73f3f83340ceb63e49ab5decfbce
6 schema:citation sg:pub.10.1007/bf01500380
7 sg:pub.10.1007/bf01797353
8 sg:pub.10.1007/bf02009733
9 sg:pub.10.1007/bf02009734
10 sg:pub.10.1007/bf02009736
11 sg:pub.10.1007/bfb0050366
12 schema:datePublished 1966-12
13 schema:datePublishedReg 1966-12-01
14 schema:description Volume relaxation and related phenomena in the glass transition of polymers are discussed. During volume relaxation, the molecular transport mobility changes. First, this in principle implies non-linearity of the volume relaxation process itself. The apparent contradiction of this fact with the linearity domain found experimentally byGoldbach (1) could be explained. Secondly, during volume relaxation the viscoelastic processes change their location in time scale, due to the change in molecular transport mobility. This is demonstrated by experimental results for poly(styrene). The change of mechanical properties during volume relaxation strongly increased with a decrease in frequency of the mechanical deformation. Consequently one should also be careful with mechanical measurements in the glass transition range, especially when performed at lower frequencies.A semi-automatic method to perform simultaneously a large series of isothermal volume relaxation measurements is presented.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N1fd477e716de40e488abb30f593273f2
19 N70bb2960ba84440fad8ea827ed454193
20 sg:journal.1050722
21 schema:keywords apparent contradiction
22 byGoldbach
23 changes
24 contradiction
25 decrease
26 deformation
27 domain
28 experimental results
29 fact
30 frequency
31 glass transition
32 glass transition range
33 isothermal volume relaxation measurements
34 large series
35 linearity domain
36 location
37 low frequency
38 measurements
39 mechanical deformation
40 mechanical measurements
41 mechanical properties
42 method
43 mobility
44 mobility changes
45 molecular transport mobility
46 molecular transport mobility changes
47 phenomenon
48 polymers
49 principles
50 process
51 properties
52 range
53 related phenomena
54 relaxation
55 relaxation measurements
56 relaxation processes
57 results
58 scale
59 semi-automatic method
60 series
61 time scales
62 transition
63 transition range
64 transport mobility
65 transport mobility changes
66 viscoelastic processes
67 volume relaxation
68 volume relaxation measurements
69 volume relaxation process
70 schema:name Volume relaxation in polymers
71 schema:pagination 303-311
72 schema:productId N4c789534184346bca2b67f4a08fe6782
73 Ne94dd96cf027484588f37228edb54ae0
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006519836
75 https://doi.org/10.1007/bf02009739
76 schema:sdDatePublished 2021-12-01T19:41
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N7d9c97e8494243078136dfefd96c3b8f
79 schema:url https://doi.org/10.1007/bf02009739
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N1fd477e716de40e488abb30f593273f2 schema:volumeNumber 5
84 rdf:type schema:PublicationVolume
85 N4c789534184346bca2b67f4a08fe6782 schema:name doi
86 schema:value 10.1007/bf02009739
87 rdf:type schema:PropertyValue
88 N530b73f3f83340ceb63e49ab5decfbce rdf:first sg:person.013767046651.26
89 rdf:rest rdf:nil
90 N70bb2960ba84440fad8ea827ed454193 schema:issueNumber 4
91 rdf:type schema:PublicationIssue
92 N7d9c97e8494243078136dfefd96c3b8f schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Ne94dd96cf027484588f37228edb54ae0 schema:name dimensions_id
95 schema:value pub.1006519836
96 rdf:type schema:PropertyValue
97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
98 schema:name Engineering
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
101 schema:name Chemical Engineering
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
104 schema:name Mechanical Engineering
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
107 schema:name Interdisciplinary Engineering
108 rdf:type schema:DefinedTerm
109 sg:journal.1050722 schema:issn 0035-4511
110 1435-1528
111 schema:name Rheologica Acta
112 schema:publisher Springer Nature
113 rdf:type schema:Periodical
114 sg:person.013767046651.26 schema:affiliation grid-institutes:grid.4858.1
115 schema:familyName Struik
116 schema:givenName L. C. E.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013767046651.26
118 rdf:type schema:Person
119 sg:pub.10.1007/bf01500380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033235347
120 https://doi.org/10.1007/bf01500380
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf01797353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038914395
123 https://doi.org/10.1007/bf01797353
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/bf02009733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010755040
126 https://doi.org/10.1007/bf02009733
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/bf02009734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045114832
129 https://doi.org/10.1007/bf02009734
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/bf02009736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008249000
132 https://doi.org/10.1007/bf02009736
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/bfb0050366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052190484
135 https://doi.org/10.1007/bfb0050366
136 rdf:type schema:CreativeWork
137 grid-institutes:grid.4858.1 schema:alternateName Centraal Laboratorium TNO, Delft, Niederlande
138 schema:name Centraal Laboratorium TNO, Delft, Niederlande
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...