Behaviour of unfilled and filled rubbers in shear in the glass-rubber transition region View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1966-12

AUTHORS

F. R. Schwarzl, H. W. Bree, C. J. Nederveen, G. A. Schwippert, L. C. E. Struik, C. W. van der Wal

ABSTRACT

Rubbers filled with high amounts of a hard inorganic filler still show the typical mechanical properties of a high polymer, viz. a glass-rubber transition region, a glassy state and a rubbery state. The influence of filler characteristics on the glass-rubber transition is discussed, chiefly on the basis of the course of shear modulus at constant frequency as a function of temperature.The influence of volume content of filler on the glass-rubber transition of composite materials consists chiefly in a change of the levels of the shear modulus in the glassy and in the rubbery state. This change may be described by a simple macroscopic model due toVan der Poel. Predictions by this theory could be confirmed for rubbers filled with single filler fractions in the range of filler size between 30–500 μm, and in the range of filler content between 0–50 vol.%.At smaller particle sizes, an influence of filler size was observed, which points to an increase in the transition temperature and to an increase in the level of modulus in the rubbery state with decreasing filler size.The preparation of composite materials with high filler contents (> 55 vol.%) is only possible by using a filler with a bimodal size distribution.In this case, moduli depend on filler content and mixing ratio of coarse to fine filler fraction; theVan der Poel theory then gives predictions which are too high in comparison with experimental results. More... »

PAGES

270-275

References to SciGraph publications

  • 1958-08. On the rheology of concentrated dispersions in RHEOLOGICA ACTA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02009733

    DOI

    http://dx.doi.org/10.1007/bf02009733

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1010755040


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Centraal Laboratorium TNO, Delft, Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4858.1", 
              "name": [
                "Centraal Laboratorium TNO, Delft, Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schwarzl", 
            "givenName": "F. R.", 
            "id": "sg:person.014411505531.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014411505531.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centraal Laboratorium TNO, Delft, Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4858.1", 
              "name": [
                "Centraal Laboratorium TNO, Delft, Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bree", 
            "givenName": "H. W.", 
            "id": "sg:person.014456453573.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014456453573.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centraal Laboratorium TNO, Delft, Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4858.1", 
              "name": [
                "Centraal Laboratorium TNO, Delft, Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nederveen", 
            "givenName": "C. J.", 
            "id": "sg:person.014224464104.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224464104.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centraal Laboratorium TNO, Delft, Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4858.1", 
              "name": [
                "Centraal Laboratorium TNO, Delft, Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schwippert", 
            "givenName": "G. A.", 
            "id": "sg:person.011411045366.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411045366.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centraal Laboratorium TNO, Delft, Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4858.1", 
              "name": [
                "Centraal Laboratorium TNO, Delft, Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Struik", 
            "givenName": "L. C. E.", 
            "id": "sg:person.013767046651.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013767046651.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centraal Laboratorium TNO, Delft, Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4858.1", 
              "name": [
                "Centraal Laboratorium TNO, Delft, Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van der Wal", 
            "givenName": "C. W.", 
            "id": "sg:person.015773544604.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015773544604.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01968867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019724687", 
              "https://doi.org/10.1007/bf01968867"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1966-12", 
        "datePublishedReg": "1966-12-01", 
        "description": "Rubbers filled with high amounts of a hard inorganic filler still show the typical mechanical properties of a high polymer, viz. a glass-rubber transition region, a glassy state and a rubbery state. The influence of filler characteristics on the glass-rubber transition is discussed, chiefly on the basis of the course of shear modulus at constant frequency as a function of temperature.The influence of volume content of filler on the glass-rubber transition of composite materials consists chiefly in a change of the levels of the shear modulus in the glassy and in the rubbery state. This change may be described by a simple macroscopic model due toVan der Poel. Predictions by this theory could be confirmed for rubbers filled with single filler fractions in the range of filler size between 30\u2013500 \u03bcm, and in the range of filler content between 0\u201350 vol.%.At smaller particle sizes, an influence of filler size was observed, which points to an increase in the transition temperature and to an increase in the level of modulus in the rubbery state with decreasing filler size.The preparation of composite materials with high filler contents (> 55 vol.%) is only possible by using a filler with a bimodal size distribution.In this case, moduli depend on filler content and mixing ratio of coarse to fine filler fraction; theVan der Poel theory then gives predictions which are too high in comparison with experimental results.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02009733", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1050722", 
            "issn": [
              "0035-4511", 
              "1435-1528"
            ], 
            "name": "Rheologica Acta", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "filler content", 
          "filler size", 
          "composite materials", 
          "filler fraction", 
          "glass-rubber transition", 
          "rubbery state", 
          "typical mechanical properties", 
          "glass-rubber transition region", 
          "high filler content", 
          "shear modulus", 
          "mechanical properties", 
          "inorganic fillers", 
          "volume content", 
          "hard inorganic filler", 
          "filler characteristics", 
          "transition region", 
          "small particle size", 
          "filler", 
          "particle size", 
          "bimodal size distribution", 
          "modulus", 
          "size distribution", 
          "rubber", 
          "transition temperature", 
          "function of temperature", 
          "experimental results", 
          "constant frequency", 
          "high polymers", 
          "materials", 
          "temperature", 
          "glassy state", 
          "shear", 
          "influence", 
          "polymers", 
          "prediction", 
          "size", 
          "glassy", 
          "content", 
          "high amounts", 
          "properties", 
          "range", 
          "fraction", 
          "behavior", 
          "characteristics", 
          "transition", 
          "increase", 
          "ratio", 
          "distribution", 
          "Poel", 
          "preparation", 
          "amount", 
          "region", 
          "frequency", 
          "theory", 
          "state", 
          "results", 
          "viz", 
          "comparison", 
          "changes", 
          "basis", 
          "cases", 
          "function", 
          "levels", 
          "course", 
          "simple macroscopic model due toVan", 
          "macroscopic model due toVan", 
          "model due toVan", 
          "due toVan", 
          "toVan", 
          "single filler fractions", 
          "level of modulus", 
          "fine filler fraction", 
          "der Poel theory", 
          "Poel theory"
        ], 
        "name": "Behaviour of unfilled and filled rubbers in shear in the glass-rubber transition region", 
        "pagination": "270-275", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1010755040"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02009733"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02009733", 
          "https://app.dimensions.ai/details/publication/pub.1010755040"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_100.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02009733"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02009733'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02009733'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02009733'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02009733'


     

    This table displays all metadata directly associated to this object as RDF triples.

    171 TRIPLES      22 PREDICATES      101 URIs      92 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02009733 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N823a94deabe14586af5b0082cb30e56b
    4 schema:citation sg:pub.10.1007/bf01968867
    5 schema:datePublished 1966-12
    6 schema:datePublishedReg 1966-12-01
    7 schema:description Rubbers filled with high amounts of a hard inorganic filler still show the typical mechanical properties of a high polymer, viz. a glass-rubber transition region, a glassy state and a rubbery state. The influence of filler characteristics on the glass-rubber transition is discussed, chiefly on the basis of the course of shear modulus at constant frequency as a function of temperature.The influence of volume content of filler on the glass-rubber transition of composite materials consists chiefly in a change of the levels of the shear modulus in the glassy and in the rubbery state. This change may be described by a simple macroscopic model due toVan der Poel. Predictions by this theory could be confirmed for rubbers filled with single filler fractions in the range of filler size between 30–500 μm, and in the range of filler content between 0–50 vol.%.At smaller particle sizes, an influence of filler size was observed, which points to an increase in the transition temperature and to an increase in the level of modulus in the rubbery state with decreasing filler size.The preparation of composite materials with high filler contents (> 55 vol.%) is only possible by using a filler with a bimodal size distribution.In this case, moduli depend on filler content and mixing ratio of coarse to fine filler fraction; theVan der Poel theory then gives predictions which are too high in comparison with experimental results.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N9a20876a6b8c46bf9d2788e9f57d8606
    12 Na9dd4980f39841eda2c1a223d9d0f93e
    13 sg:journal.1050722
    14 schema:keywords Poel
    15 Poel theory
    16 amount
    17 basis
    18 behavior
    19 bimodal size distribution
    20 cases
    21 changes
    22 characteristics
    23 comparison
    24 composite materials
    25 constant frequency
    26 content
    27 course
    28 der Poel theory
    29 distribution
    30 due toVan
    31 experimental results
    32 filler
    33 filler characteristics
    34 filler content
    35 filler fraction
    36 filler size
    37 fine filler fraction
    38 fraction
    39 frequency
    40 function
    41 function of temperature
    42 glass-rubber transition
    43 glass-rubber transition region
    44 glassy
    45 glassy state
    46 hard inorganic filler
    47 high amounts
    48 high filler content
    49 high polymers
    50 increase
    51 influence
    52 inorganic fillers
    53 level of modulus
    54 levels
    55 macroscopic model due toVan
    56 materials
    57 mechanical properties
    58 model due toVan
    59 modulus
    60 particle size
    61 polymers
    62 prediction
    63 preparation
    64 properties
    65 range
    66 ratio
    67 region
    68 results
    69 rubber
    70 rubbery state
    71 shear
    72 shear modulus
    73 simple macroscopic model due toVan
    74 single filler fractions
    75 size
    76 size distribution
    77 small particle size
    78 state
    79 temperature
    80 theory
    81 toVan
    82 transition
    83 transition region
    84 transition temperature
    85 typical mechanical properties
    86 viz
    87 volume content
    88 schema:name Behaviour of unfilled and filled rubbers in shear in the glass-rubber transition region
    89 schema:pagination 270-275
    90 schema:productId N00b1654d91134345b16c79086c89ab31
    91 Ne85f2ad8178547f6883bc5812c43c1ae
    92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010755040
    93 https://doi.org/10.1007/bf02009733
    94 schema:sdDatePublished 2021-12-01T19:01
    95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    96 schema:sdPublisher N431a2277c46e445bbf8a79d5d2edda53
    97 schema:url https://doi.org/10.1007/bf02009733
    98 sgo:license sg:explorer/license/
    99 sgo:sdDataset articles
    100 rdf:type schema:ScholarlyArticle
    101 N00b1654d91134345b16c79086c89ab31 schema:name dimensions_id
    102 schema:value pub.1010755040
    103 rdf:type schema:PropertyValue
    104 N2f0e96749dd9419fbd389b4fc98cd40e rdf:first sg:person.014224464104.18
    105 rdf:rest Nfa96c171876c4d6cb48f32ded8842339
    106 N41e7bd8b297042aaad0e2b6fd418d049 rdf:first sg:person.014456453573.30
    107 rdf:rest N2f0e96749dd9419fbd389b4fc98cd40e
    108 N431a2277c46e445bbf8a79d5d2edda53 schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 N823a94deabe14586af5b0082cb30e56b rdf:first sg:person.014411505531.36
    111 rdf:rest N41e7bd8b297042aaad0e2b6fd418d049
    112 N9a20876a6b8c46bf9d2788e9f57d8606 schema:volumeNumber 5
    113 rdf:type schema:PublicationVolume
    114 Na9dd4980f39841eda2c1a223d9d0f93e schema:issueNumber 4
    115 rdf:type schema:PublicationIssue
    116 Nb6c3beade4c346dc84f32c42167623dc rdf:first sg:person.015773544604.01
    117 rdf:rest rdf:nil
    118 Ncfcc4057e8d34845b98ae659c73ff7b4 rdf:first sg:person.013767046651.26
    119 rdf:rest Nb6c3beade4c346dc84f32c42167623dc
    120 Ne85f2ad8178547f6883bc5812c43c1ae schema:name doi
    121 schema:value 10.1007/bf02009733
    122 rdf:type schema:PropertyValue
    123 Nfa96c171876c4d6cb48f32ded8842339 rdf:first sg:person.011411045366.12
    124 rdf:rest Ncfcc4057e8d34845b98ae659c73ff7b4
    125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Engineering
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Materials Engineering
    130 rdf:type schema:DefinedTerm
    131 sg:journal.1050722 schema:issn 0035-4511
    132 1435-1528
    133 schema:name Rheologica Acta
    134 schema:publisher Springer Nature
    135 rdf:type schema:Periodical
    136 sg:person.011411045366.12 schema:affiliation grid-institutes:grid.4858.1
    137 schema:familyName Schwippert
    138 schema:givenName G. A.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411045366.12
    140 rdf:type schema:Person
    141 sg:person.013767046651.26 schema:affiliation grid-institutes:grid.4858.1
    142 schema:familyName Struik
    143 schema:givenName L. C. E.
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013767046651.26
    145 rdf:type schema:Person
    146 sg:person.014224464104.18 schema:affiliation grid-institutes:grid.4858.1
    147 schema:familyName Nederveen
    148 schema:givenName C. J.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224464104.18
    150 rdf:type schema:Person
    151 sg:person.014411505531.36 schema:affiliation grid-institutes:grid.4858.1
    152 schema:familyName Schwarzl
    153 schema:givenName F. R.
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014411505531.36
    155 rdf:type schema:Person
    156 sg:person.014456453573.30 schema:affiliation grid-institutes:grid.4858.1
    157 schema:familyName Bree
    158 schema:givenName H. W.
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014456453573.30
    160 rdf:type schema:Person
    161 sg:person.015773544604.01 schema:affiliation grid-institutes:grid.4858.1
    162 schema:familyName van der Wal
    163 schema:givenName C. W.
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015773544604.01
    165 rdf:type schema:Person
    166 sg:pub.10.1007/bf01968867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019724687
    167 https://doi.org/10.1007/bf01968867
    168 rdf:type schema:CreativeWork
    169 grid-institutes:grid.4858.1 schema:alternateName Centraal Laboratorium TNO, Delft, Netherlands
    170 schema:name Centraal Laboratorium TNO, Delft, Netherlands
    171 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...