On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-06

AUTHORS

Shuichi Kawashima, Akitaka Matsumura, Takaaki Nishida

ABSTRACT

The compressible and heat-conductive Navier-Stokes equation obtained as the second approximation of the formal Chapman-Enskog expansion is investigated on its relations to the original nonlinear Boltzmann equation and also to the incompressible Navier-Stokes equation. The solutions of the Boltzmann equation and the incompressible Navier-Stokes equation for small initial data are proved to be asymptotically equivalent (mod decay ratet−5/4) ast→+∞ to that of the compressible Navier-Stokes equation for the corresponding initial data. More... »

PAGES

97-124

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01982349

DOI

http://dx.doi.org/10.1007/bf01982349

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024608912


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Applied Mathematics and Physics, Kyoto University, 606, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawashima", 
        "givenName": "Shuichi", 
        "id": "sg:person.07670633635.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07670633635.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Applied Mathematics and Physics, Kyoto University, 606, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsumura", 
        "givenName": "Akitaka", 
        "id": "sg:person.013370316155.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013370316155.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Applied Mathematics and Physics, Kyoto University, 606, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishida", 
        "givenName": "Takaaki", 
        "id": "sg:person.014510362511.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014510362511.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01609490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024924697", 
          "https://doi.org/10.1007/bf01609490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024924697", 
          "https://doi.org/10.1007/bf01609490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02547354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026181143", 
          "https://doi.org/10.1007/bf02547354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1706716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057775891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1761467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057816525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2977/prims/1195190965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070935433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3792/pjaa.55.337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071430446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/kjm/1250522322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083509660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/psapm/017/0184507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089200249"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1979-06", 
    "datePublishedReg": "1979-06-01", 
    "description": "The compressible and heat-conductive Navier-Stokes equation obtained as the second approximation of the formal Chapman-Enskog expansion is investigated on its relations to the original nonlinear Boltzmann equation and also to the incompressible Navier-Stokes equation. The solutions of the Boltzmann equation and the incompressible Navier-Stokes equation for small initial data are proved to be asymptotically equivalent (mod decay ratet\u22125/4) ast\u2192+\u221e to that of the compressible Navier-Stokes equation for the corresponding initial data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01982349", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "70"
      }
    ], 
    "name": "On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation", 
    "pagination": "97-124", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "753ca9d2434565b8de2f860aa6d74144f4a4ce200bdcad5e696d21206bd34d83"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01982349"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024608912"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01982349", 
      "https://app.dimensions.ai/details/publication/pub.1024608912"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57902_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01982349"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01982349'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01982349'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01982349'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01982349'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01982349 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4a2f8877463f4d658b4ae1123d300d02
4 schema:citation sg:pub.10.1007/bf01609490
5 sg:pub.10.1007/bf02547354
6 https://doi.org/10.1063/1.1706716
7 https://doi.org/10.1063/1.1761467
8 https://doi.org/10.1090/psapm/017/0184507
9 https://doi.org/10.1215/kjm/1250522322
10 https://doi.org/10.2977/prims/1195190965
11 https://doi.org/10.3792/pjaa.55.337
12 schema:datePublished 1979-06
13 schema:datePublishedReg 1979-06-01
14 schema:description The compressible and heat-conductive Navier-Stokes equation obtained as the second approximation of the formal Chapman-Enskog expansion is investigated on its relations to the original nonlinear Boltzmann equation and also to the incompressible Navier-Stokes equation. The solutions of the Boltzmann equation and the incompressible Navier-Stokes equation for small initial data are proved to be asymptotically equivalent (mod decay ratet−5/4) ast→+∞ to that of the compressible Navier-Stokes equation for the corresponding initial data.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N8b3fa0bfd6724c909d15154543dc91ac
19 Nb6753868aee34a1ca28317178f8854dd
20 sg:journal.1136216
21 schema:name On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation
22 schema:pagination 97-124
23 schema:productId N341bf6196cb34e32a38513d33fcbe477
24 Nd7159bf5c3de4266bc253a38e9419173
25 Ne2869da83a5840ed896d68e9b9e13773
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024608912
27 https://doi.org/10.1007/bf01982349
28 schema:sdDatePublished 2019-04-11T11:27
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N4bbf3045064e43b2ad02c5e9a11232a9
31 schema:url http://link.springer.com/10.1007/BF01982349
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N341bf6196cb34e32a38513d33fcbe477 schema:name readcube_id
36 schema:value 753ca9d2434565b8de2f860aa6d74144f4a4ce200bdcad5e696d21206bd34d83
37 rdf:type schema:PropertyValue
38 N4a2f8877463f4d658b4ae1123d300d02 rdf:first sg:person.07670633635.63
39 rdf:rest N7a817ebd722e4d618d920a6decf3b8e6
40 N4bbf3045064e43b2ad02c5e9a11232a9 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N7a817ebd722e4d618d920a6decf3b8e6 rdf:first sg:person.013370316155.59
43 rdf:rest Nddcc6571586b461cac21e60e73c3243e
44 N8b3fa0bfd6724c909d15154543dc91ac schema:volumeNumber 70
45 rdf:type schema:PublicationVolume
46 Nb6753868aee34a1ca28317178f8854dd schema:issueNumber 2
47 rdf:type schema:PublicationIssue
48 Nd7159bf5c3de4266bc253a38e9419173 schema:name dimensions_id
49 schema:value pub.1024608912
50 rdf:type schema:PropertyValue
51 Nddcc6571586b461cac21e60e73c3243e rdf:first sg:person.014510362511.41
52 rdf:rest rdf:nil
53 Ne2869da83a5840ed896d68e9b9e13773 schema:name doi
54 schema:value 10.1007/bf01982349
55 rdf:type schema:PropertyValue
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1136216 schema:issn 0010-3616
63 1432-0916
64 schema:name Communications in Mathematical Physics
65 rdf:type schema:Periodical
66 sg:person.013370316155.59 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
67 schema:familyName Matsumura
68 schema:givenName Akitaka
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013370316155.59
70 rdf:type schema:Person
71 sg:person.014510362511.41 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
72 schema:familyName Nishida
73 schema:givenName Takaaki
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014510362511.41
75 rdf:type schema:Person
76 sg:person.07670633635.63 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
77 schema:familyName Kawashima
78 schema:givenName Shuichi
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07670633635.63
80 rdf:type schema:Person
81 sg:pub.10.1007/bf01609490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024924697
82 https://doi.org/10.1007/bf01609490
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf02547354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026181143
85 https://doi.org/10.1007/bf02547354
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1063/1.1706716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057775891
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1063/1.1761467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057816525
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1090/psapm/017/0184507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089200249
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1215/kjm/1250522322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083509660
94 rdf:type schema:CreativeWork
95 https://doi.org/10.2977/prims/1195190965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070935433
96 rdf:type schema:CreativeWork
97 https://doi.org/10.3792/pjaa.55.337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071430446
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
100 schema:name Department of Applied Mathematics and Physics, Kyoto University, 606, Kyoto, Japan
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...