On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-06

AUTHORS

Shuichi Kawashima, Akitaka Matsumura, Takaaki Nishida

ABSTRACT

The compressible and heat-conductive Navier-Stokes equation obtained as the second approximation of the formal Chapman-Enskog expansion is investigated on its relations to the original nonlinear Boltzmann equation and also to the incompressible Navier-Stokes equation. The solutions of the Boltzmann equation and the incompressible Navier-Stokes equation for small initial data are proved to be asymptotically equivalent (mod decay ratet−5/4) ast→+∞ to that of the compressible Navier-Stokes equation for the corresponding initial data. More... »

PAGES

97-124

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01982349

DOI

http://dx.doi.org/10.1007/bf01982349

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024608912


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Applied Mathematics and Physics, Kyoto University, 606, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawashima", 
        "givenName": "Shuichi", 
        "id": "sg:person.07670633635.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07670633635.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Applied Mathematics and Physics, Kyoto University, 606, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsumura", 
        "givenName": "Akitaka", 
        "id": "sg:person.013370316155.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013370316155.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Applied Mathematics and Physics, Kyoto University, 606, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishida", 
        "givenName": "Takaaki", 
        "id": "sg:person.014510362511.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014510362511.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01609490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024924697", 
          "https://doi.org/10.1007/bf01609490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024924697", 
          "https://doi.org/10.1007/bf01609490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02547354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026181143", 
          "https://doi.org/10.1007/bf02547354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1706716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057775891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1761467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057816525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2977/prims/1195190965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070935433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3792/pjaa.55.337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071430446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/kjm/1250522322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083509660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/psapm/017/0184507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089200249"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1979-06", 
    "datePublishedReg": "1979-06-01", 
    "description": "The compressible and heat-conductive Navier-Stokes equation obtained as the second approximation of the formal Chapman-Enskog expansion is investigated on its relations to the original nonlinear Boltzmann equation and also to the incompressible Navier-Stokes equation. The solutions of the Boltzmann equation and the incompressible Navier-Stokes equation for small initial data are proved to be asymptotically equivalent (mod decay ratet\u22125/4) ast\u2192+\u221e to that of the compressible Navier-Stokes equation for the corresponding initial data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01982349", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "70"
      }
    ], 
    "name": "On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation", 
    "pagination": "97-124", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "753ca9d2434565b8de2f860aa6d74144f4a4ce200bdcad5e696d21206bd34d83"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01982349"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024608912"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01982349", 
      "https://app.dimensions.ai/details/publication/pub.1024608912"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57902_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01982349"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01982349'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01982349'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01982349'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01982349'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01982349 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nea271039500f46fb8a7a478ac3d62c0e
4 schema:citation sg:pub.10.1007/bf01609490
5 sg:pub.10.1007/bf02547354
6 https://doi.org/10.1063/1.1706716
7 https://doi.org/10.1063/1.1761467
8 https://doi.org/10.1090/psapm/017/0184507
9 https://doi.org/10.1215/kjm/1250522322
10 https://doi.org/10.2977/prims/1195190965
11 https://doi.org/10.3792/pjaa.55.337
12 schema:datePublished 1979-06
13 schema:datePublishedReg 1979-06-01
14 schema:description The compressible and heat-conductive Navier-Stokes equation obtained as the second approximation of the formal Chapman-Enskog expansion is investigated on its relations to the original nonlinear Boltzmann equation and also to the incompressible Navier-Stokes equation. The solutions of the Boltzmann equation and the incompressible Navier-Stokes equation for small initial data are proved to be asymptotically equivalent (mod decay ratet−5/4) ast→+∞ to that of the compressible Navier-Stokes equation for the corresponding initial data.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N405837608a6548e6ae07cc4d61873aaf
19 N7af5871c1d6e4abdb5b2f1e3fdf9a416
20 sg:journal.1136216
21 schema:name On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation
22 schema:pagination 97-124
23 schema:productId N8ac6e06b047c4d4e9ca2b12be733b563
24 N8be83fa3b13d4de59c8c27b0ea1ac842
25 Nb1db0e0dfc924cfa9100a1e160978735
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024608912
27 https://doi.org/10.1007/bf01982349
28 schema:sdDatePublished 2019-04-11T11:27
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N4665e733e88f456bbbc3e602e22afd85
31 schema:url http://link.springer.com/10.1007/BF01982349
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N405837608a6548e6ae07cc4d61873aaf schema:issueNumber 2
36 rdf:type schema:PublicationIssue
37 N4665e733e88f456bbbc3e602e22afd85 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N7af5871c1d6e4abdb5b2f1e3fdf9a416 schema:volumeNumber 70
40 rdf:type schema:PublicationVolume
41 N8ac6e06b047c4d4e9ca2b12be733b563 schema:name doi
42 schema:value 10.1007/bf01982349
43 rdf:type schema:PropertyValue
44 N8be83fa3b13d4de59c8c27b0ea1ac842 schema:name dimensions_id
45 schema:value pub.1024608912
46 rdf:type schema:PropertyValue
47 Na82758819d4848879a4db5ece899425e rdf:first sg:person.014510362511.41
48 rdf:rest rdf:nil
49 Nb1db0e0dfc924cfa9100a1e160978735 schema:name readcube_id
50 schema:value 753ca9d2434565b8de2f860aa6d74144f4a4ce200bdcad5e696d21206bd34d83
51 rdf:type schema:PropertyValue
52 Ne9995dca019e4234b8ebba48f008590e rdf:first sg:person.013370316155.59
53 rdf:rest Na82758819d4848879a4db5ece899425e
54 Nea271039500f46fb8a7a478ac3d62c0e rdf:first sg:person.07670633635.63
55 rdf:rest Ne9995dca019e4234b8ebba48f008590e
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1136216 schema:issn 0010-3616
63 1432-0916
64 schema:name Communications in Mathematical Physics
65 rdf:type schema:Periodical
66 sg:person.013370316155.59 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
67 schema:familyName Matsumura
68 schema:givenName Akitaka
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013370316155.59
70 rdf:type schema:Person
71 sg:person.014510362511.41 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
72 schema:familyName Nishida
73 schema:givenName Takaaki
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014510362511.41
75 rdf:type schema:Person
76 sg:person.07670633635.63 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
77 schema:familyName Kawashima
78 schema:givenName Shuichi
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07670633635.63
80 rdf:type schema:Person
81 sg:pub.10.1007/bf01609490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024924697
82 https://doi.org/10.1007/bf01609490
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf02547354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026181143
85 https://doi.org/10.1007/bf02547354
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1063/1.1706716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057775891
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1063/1.1761467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057816525
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1090/psapm/017/0184507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089200249
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1215/kjm/1250522322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083509660
94 rdf:type schema:CreativeWork
95 https://doi.org/10.2977/prims/1195190965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070935433
96 rdf:type schema:CreativeWork
97 https://doi.org/10.3792/pjaa.55.337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071430446
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
100 schema:name Department of Applied Mathematics and Physics, Kyoto University, 606, Kyoto, Japan
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...