Free damped vibrations of linear viscoelastic materials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1967-05

AUTHORS

L. C. E. Struik

ABSTRACT

A mechanical system consisting of an inert component, attached to a linear viscoelastic spring, is studied theoretically. Basic assumptions about the viscoelastic material areBoltzmann's superposition principle and a positive discrete relaxation spectrum. The equation of motion and its formal solution for free damped vibrations are discussed.The theory focusses on the determination of the complex dynamic modulus, defined for undamped sinusoidal vibrations, by free damped vibrations. Simple approximation formulae to calculate the dynamic modulus from free vibration data, i. e. eigen frequency and logarithmic decrement, are given; upper limits for the approximation errors could be derived. More... »

PAGES

119-129

References to SciGraph publications

  • 1952-09. Zu einer einheitlichen Theorie der Relaxationserscheinungen in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01969161

    DOI

    http://dx.doi.org/10.1007/bf01969161

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004368155


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Centraal Laboratorium, TNO, Delft, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4858.1", 
              "name": [
                "Centraal Laboratorium, TNO, Delft, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Struik", 
            "givenName": "L. C. E.", 
            "id": "sg:person.013767046651.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013767046651.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01948687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010881748", 
              "https://doi.org/10.1007/bf01948687"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1967-05", 
        "datePublishedReg": "1967-05-01", 
        "description": "A mechanical system consisting of an inert component, attached to a linear viscoelastic spring, is studied theoretically. Basic assumptions about the viscoelastic material areBoltzmann's superposition principle and a positive discrete relaxation spectrum. The equation of motion and its formal solution for free damped vibrations are discussed.The theory focusses on the determination of the complex dynamic modulus, defined for undamped sinusoidal vibrations, by free damped vibrations. Simple approximation formulae to calculate the dynamic modulus from free vibration data, i. e. eigen frequency and logarithmic decrement, are given; upper limits for the approximation errors could be derived.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01969161", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1050722", 
            "issn": [
              "0035-4511", 
              "1435-1528"
            ], 
            "name": "Rheologica Acta", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "dynamic modulus", 
          "free damped vibrations", 
          "linear viscoelastic materials", 
          "superposition principle", 
          "free vibration data", 
          "complex dynamic modulus", 
          "viscoelastic materials", 
          "vibration data", 
          "viscoelastic springs", 
          "mechanical systems", 
          "equations of motion", 
          "damped vibrations", 
          "sinusoidal vibration", 
          "logarithmic decrement", 
          "vibration", 
          "eigen frequencies", 
          "modulus", 
          "inert components", 
          "relaxation spectrum", 
          "discrete relaxation spectrum", 
          "materials", 
          "approximation error", 
          "motion", 
          "equations", 
          "solution", 
          "formal solution", 
          "simple approximation", 
          "error", 
          "system", 
          "basic assumptions", 
          "components", 
          "upper limit", 
          "frequency", 
          "spring", 
          "limit", 
          "principles", 
          "determination", 
          "approximation", 
          "assumption", 
          "theory", 
          "spectra", 
          "data", 
          "decrement", 
          "linear viscoelastic spring", 
          "viscoelastic material areBoltzmann's superposition principle", 
          "material areBoltzmann's superposition principle", 
          "areBoltzmann's superposition principle", 
          "positive discrete relaxation spectrum", 
          "undamped sinusoidal vibrations"
        ], 
        "name": "Free damped vibrations of linear viscoelastic materials", 
        "pagination": "119-129", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004368155"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01969161"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01969161", 
          "https://app.dimensions.ai/details/publication/pub.1004368155"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_79.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01969161"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01969161'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01969161'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01969161'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01969161'


     

    This table displays all metadata directly associated to this object as RDF triples.

    119 TRIPLES      22 PREDICATES      78 URIs      67 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01969161 schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 anzsrc-for:0913
    4 anzsrc-for:0915
    5 schema:author Nc1366a1c35514897bb5824c645925710
    6 schema:citation sg:pub.10.1007/bf01948687
    7 schema:datePublished 1967-05
    8 schema:datePublishedReg 1967-05-01
    9 schema:description A mechanical system consisting of an inert component, attached to a linear viscoelastic spring, is studied theoretically. Basic assumptions about the viscoelastic material areBoltzmann's superposition principle and a positive discrete relaxation spectrum. The equation of motion and its formal solution for free damped vibrations are discussed.The theory focusses on the determination of the complex dynamic modulus, defined for undamped sinusoidal vibrations, by free damped vibrations. Simple approximation formulae to calculate the dynamic modulus from free vibration data, i. e. eigen frequency and logarithmic decrement, are given; upper limits for the approximation errors could be derived.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N2fff0a25771f4e758525d27653feb130
    14 Nd63d1e3f06854dea8b672f7a07962204
    15 sg:journal.1050722
    16 schema:keywords approximation
    17 approximation error
    18 areBoltzmann's superposition principle
    19 assumption
    20 basic assumptions
    21 complex dynamic modulus
    22 components
    23 damped vibrations
    24 data
    25 decrement
    26 determination
    27 discrete relaxation spectrum
    28 dynamic modulus
    29 eigen frequencies
    30 equations
    31 equations of motion
    32 error
    33 formal solution
    34 free damped vibrations
    35 free vibration data
    36 frequency
    37 inert components
    38 limit
    39 linear viscoelastic materials
    40 linear viscoelastic spring
    41 logarithmic decrement
    42 material areBoltzmann's superposition principle
    43 materials
    44 mechanical systems
    45 modulus
    46 motion
    47 positive discrete relaxation spectrum
    48 principles
    49 relaxation spectrum
    50 simple approximation
    51 sinusoidal vibration
    52 solution
    53 spectra
    54 spring
    55 superposition principle
    56 system
    57 theory
    58 undamped sinusoidal vibrations
    59 upper limit
    60 vibration
    61 vibration data
    62 viscoelastic material areBoltzmann's superposition principle
    63 viscoelastic materials
    64 viscoelastic springs
    65 schema:name Free damped vibrations of linear viscoelastic materials
    66 schema:pagination 119-129
    67 schema:productId Nbcfe711a7e5a4ca3b33112812faf86fb
    68 Nd98762f3f4ba44858c99dbd29d46cbcd
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004368155
    70 https://doi.org/10.1007/bf01969161
    71 schema:sdDatePublished 2021-11-01T18:33
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N67465da232724d01b90363bdc0ad44f2
    74 schema:url https://doi.org/10.1007/bf01969161
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N2fff0a25771f4e758525d27653feb130 schema:issueNumber 2
    79 rdf:type schema:PublicationIssue
    80 N67465da232724d01b90363bdc0ad44f2 schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 Nbcfe711a7e5a4ca3b33112812faf86fb schema:name doi
    83 schema:value 10.1007/bf01969161
    84 rdf:type schema:PropertyValue
    85 Nc1366a1c35514897bb5824c645925710 rdf:first sg:person.013767046651.26
    86 rdf:rest rdf:nil
    87 Nd63d1e3f06854dea8b672f7a07962204 schema:volumeNumber 6
    88 rdf:type schema:PublicationVolume
    89 Nd98762f3f4ba44858c99dbd29d46cbcd schema:name dimensions_id
    90 schema:value pub.1004368155
    91 rdf:type schema:PropertyValue
    92 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Engineering
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Chemical Engineering
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Mechanical Engineering
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Interdisciplinary Engineering
    103 rdf:type schema:DefinedTerm
    104 sg:journal.1050722 schema:issn 0035-4511
    105 1435-1528
    106 schema:name Rheologica Acta
    107 schema:publisher Springer Nature
    108 rdf:type schema:Periodical
    109 sg:person.013767046651.26 schema:affiliation grid-institutes:grid.4858.1
    110 schema:familyName Struik
    111 schema:givenName L. C. E.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013767046651.26
    113 rdf:type schema:Person
    114 sg:pub.10.1007/bf01948687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010881748
    115 https://doi.org/10.1007/bf01948687
    116 rdf:type schema:CreativeWork
    117 grid-institutes:grid.4858.1 schema:alternateName Centraal Laboratorium, TNO, Delft, The Netherlands
    118 schema:name Centraal Laboratorium, TNO, Delft, The Netherlands
    119 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...