Translation invariance and instability of phase coexistence in the two dimensional Ising system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1980-05

AUTHORS

Michael Aizenman

ABSTRACT

It is shown that any Gibbs state of the two dimensional ferromagnetic Ising system is of the form λμ++(1−λ)μ−, with some λ∈ [0, 1]. This excludes the possibility of a locally stable phase coexistence and of translation symmetry breaking, which are known to occur in higher dimensions. Use is made in the proof of the stochastic aspects of the geometry of the interface lines. More... »

PAGES

83-94

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01942696

DOI

http://dx.doi.org/10.1007/bf01942696

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039238256


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Physics, Princeton University, 08544, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aizenman", 
        "givenName": "Michael", 
        "id": "sg:person.01205125370.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205125370.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01645631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005380975", 
          "https://doi.org/10.1007/bf01645631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005380975", 
          "https://doi.org/10.1007/bf01645631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01617925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017947015", 
          "https://doi.org/10.1007/bf01617925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01651330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019334545", 
          "https://doi.org/10.1007/bf01651330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01651330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019334545", 
          "https://doi.org/10.1007/bf01651330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025981856", 
          "https://doi.org/10.1007/bf01645980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025981856", 
          "https://doi.org/10.1007/bf01645980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035015826", 
          "https://doi.org/10.1007/bf01645615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035015826", 
          "https://doi.org/10.1007/bf01645615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01614092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037382141", 
          "https://doi.org/10.1007/bf01614092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01608634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040464879", 
          "https://doi.org/10.1007/bf01608634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01608634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040464879", 
          "https://doi.org/10.1007/bf01608634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01197743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040695034", 
          "https://doi.org/10.1007/bf01197743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01197743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040695034", 
          "https://doi.org/10.1007/bf01197743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042070711", 
          "https://doi.org/10.1007/bf01645487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042070711", 
          "https://doi.org/10.1007/bf01645487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01040105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046848555", 
          "https://doi.org/10.1007/bf01040105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053199265", 
          "https://doi.org/10.1007/bf01238848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.33.377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060778618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.33.377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060778618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1113026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062866131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1117073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062866541"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1980-05", 
    "datePublishedReg": "1980-05-01", 
    "description": "It is shown that any Gibbs state of the two dimensional ferromagnetic Ising system is of the form \u03bb\u03bc++(1\u2212\u03bb)\u03bc\u2212, with some \u03bb\u2208 [0, 1]. This excludes the possibility of a locally stable phase coexistence and of translation symmetry breaking, which are known to occur in higher dimensions. Use is made in the proof of the stochastic aspects of the geometry of the interface lines.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01942696", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "73"
      }
    ], 
    "name": "Translation invariance and instability of phase coexistence in the two dimensional Ising system", 
    "pagination": "83-94", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bae8b46f44cd372e9426dddc3f8caa0c99387b333ab8a3be6e8e356fd60f88aa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01942696"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039238256"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01942696", 
      "https://app.dimensions.ai/details/publication/pub.1039238256"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_53001_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01942696"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01942696'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01942696'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01942696'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01942696'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01942696 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N479e2f50bb094c9b813341f7ba7d5787
4 schema:citation sg:pub.10.1007/bf01040105
5 sg:pub.10.1007/bf01197743
6 sg:pub.10.1007/bf01238848
7 sg:pub.10.1007/bf01608634
8 sg:pub.10.1007/bf01614092
9 sg:pub.10.1007/bf01617925
10 sg:pub.10.1007/bf01645487
11 sg:pub.10.1007/bf01645615
12 sg:pub.10.1007/bf01645631
13 sg:pub.10.1007/bf01645980
14 sg:pub.10.1007/bf01651330
15 https://doi.org/10.1103/physrevlett.33.377
16 https://doi.org/10.1103/physrevlett.43.407
17 https://doi.org/10.1137/1113026
18 https://doi.org/10.1137/1117073
19 schema:datePublished 1980-05
20 schema:datePublishedReg 1980-05-01
21 schema:description It is shown that any Gibbs state of the two dimensional ferromagnetic Ising system is of the form λμ++(1−λ)μ−, with some λ∈ [0, 1]. This excludes the possibility of a locally stable phase coexistence and of translation symmetry breaking, which are known to occur in higher dimensions. Use is made in the proof of the stochastic aspects of the geometry of the interface lines.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N60f8ff7104c446f398340dea2f3406bd
26 N6f98e7cdd64b411d8b8c5405d37815fb
27 sg:journal.1136216
28 schema:name Translation invariance and instability of phase coexistence in the two dimensional Ising system
29 schema:pagination 83-94
30 schema:productId N5a8a6be5ba944b03bb38cf29c27b7da8
31 N602cbca41ebb4e5783a73a744fdb89d5
32 N61a254177eef4f739a569fdff2035e73
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039238256
34 https://doi.org/10.1007/bf01942696
35 schema:sdDatePublished 2019-04-11T11:23
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N4fa187c89e2342d18ef661f2b12e76a2
38 schema:url http://link.springer.com/10.1007/BF01942696
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N479e2f50bb094c9b813341f7ba7d5787 rdf:first sg:person.01205125370.06
43 rdf:rest rdf:nil
44 N4fa187c89e2342d18ef661f2b12e76a2 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N5a8a6be5ba944b03bb38cf29c27b7da8 schema:name dimensions_id
47 schema:value pub.1039238256
48 rdf:type schema:PropertyValue
49 N602cbca41ebb4e5783a73a744fdb89d5 schema:name readcube_id
50 schema:value bae8b46f44cd372e9426dddc3f8caa0c99387b333ab8a3be6e8e356fd60f88aa
51 rdf:type schema:PropertyValue
52 N60f8ff7104c446f398340dea2f3406bd schema:issueNumber 1
53 rdf:type schema:PublicationIssue
54 N61a254177eef4f739a569fdff2035e73 schema:name doi
55 schema:value 10.1007/bf01942696
56 rdf:type schema:PropertyValue
57 N6f98e7cdd64b411d8b8c5405d37815fb schema:volumeNumber 73
58 rdf:type schema:PublicationVolume
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
63 schema:name Pure Mathematics
64 rdf:type schema:DefinedTerm
65 sg:journal.1136216 schema:issn 0010-3616
66 1432-0916
67 schema:name Communications in Mathematical Physics
68 rdf:type schema:Periodical
69 sg:person.01205125370.06 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
70 schema:familyName Aizenman
71 schema:givenName Michael
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205125370.06
73 rdf:type schema:Person
74 sg:pub.10.1007/bf01040105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046848555
75 https://doi.org/10.1007/bf01040105
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf01197743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040695034
78 https://doi.org/10.1007/bf01197743
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf01238848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053199265
81 https://doi.org/10.1007/bf01238848
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf01608634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040464879
84 https://doi.org/10.1007/bf01608634
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf01614092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037382141
87 https://doi.org/10.1007/bf01614092
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf01617925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017947015
90 https://doi.org/10.1007/bf01617925
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf01645487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042070711
93 https://doi.org/10.1007/bf01645487
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf01645615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035015826
96 https://doi.org/10.1007/bf01645615
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf01645631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005380975
99 https://doi.org/10.1007/bf01645631
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf01645980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025981856
102 https://doi.org/10.1007/bf01645980
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf01651330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019334545
105 https://doi.org/10.1007/bf01651330
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevlett.33.377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060778618
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevlett.43.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060784446
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1137/1113026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062866131
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1137/1117073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062866541
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
116 schema:name Department of Physics, Princeton University, 08544, Princeton, NJ, USA
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...