Nonequilibrium measures which exhibit a temperature gradient: Study of a model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1981-09

AUTHORS

A. Galves, C. Kipnis, C. Marchioro, E. Presutti

ABSTRACT

We give some rules to define measures which could describe heat flow in homogeneous crystals. We then study a particular model which is explicitly solvable: the one dimensional nearest neighborhood Ising model. We analyze two cases. In the first one the spins at the two boundaries interact with reservoirs at different temperatures; in the thermodynamical limit the measure we introduce converges locally to Gibbs measures and a temperature profile is so derived. We obtain an explicit expression for the thermal conductivity coefficient which depends on the temperature. In the second case we study the asymptotic behavior starting from an initial state in which each half of the space is at a different temperature. We find again a temperature profile which asymptotically obeys the heat equation with the thermal conductivity coefficient previously derived. From a mathematical point of view, the analysis of the invariant measure is made possible by studying a “time-reversed” process related to a graphical representation of an associated process. This provides us with an explicit formula for then-fold correlation function and we study the limiting behavior using both this representation (for proving an exchangeability result) and a Donsker-type, spacetime renormalization procedure. More... »

PAGES

127-147

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01941803

DOI

http://dx.doi.org/10.1007/bf01941803

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053040699


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sao Paulo", 
          "id": "https://www.grid.ac/institutes/grid.11899.38", 
          "name": [
            "Instituto de Mat\u00e9matica e Estatistica, Universidade de S\u00e3o Paulo, S\u00e3o Paulo, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galves", 
        "givenName": "A.", 
        "id": "sg:person.011175042001.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011175042001.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Centre de Math\u00e9matiques de l'Ecole Polytechnique, Plateau de Palaiseau, F-91128, Palaiseau Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kipnis", 
        "givenName": "C.", 
        "id": "sg:person.015242521125.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015242521125.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Matematica, Libera Universit\u00e0 di Trento, I-38050, Povo (Trento), Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marchioro", 
        "givenName": "C.", 
        "id": "sg:person.012323407145.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012323407145.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Istituto Matematico, Universit\u00e0 di Roma, I-00100, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Presutti", 
        "givenName": "E.", 
        "id": "sg:person.012167647117.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012167647117.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0097493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000743960", 
          "https://doi.org/10.1007/bfb0097493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00535015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001745066", 
          "https://doi.org/10.1007/bf00535015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1974-0375533-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007973559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01014307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012333865", 
          "https://doi.org/10.1007/bf01014307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0068557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015149964", 
          "https://doi.org/10.1007/bfb0068557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0068557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015149964", 
          "https://doi.org/10.1007/bfb0068557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01614132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015305894", 
          "https://doi.org/10.1007/bf01614132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01614132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015305894", 
          "https://doi.org/10.1007/bf01614132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200032502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037516797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01654281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040708710", 
          "https://doi.org/10.1007/bf01654281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01654281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040708710", 
          "https://doi.org/10.1007/bf01654281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176995524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064405209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3212273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070226495"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1981-09", 
    "datePublishedReg": "1981-09-01", 
    "description": "We give some rules to define measures which could describe heat flow in homogeneous crystals. We then study a particular model which is explicitly solvable: the one dimensional nearest neighborhood Ising model. We analyze two cases. In the first one the spins at the two boundaries interact with reservoirs at different temperatures; in the thermodynamical limit the measure we introduce converges locally to Gibbs measures and a temperature profile is so derived. We obtain an explicit expression for the thermal conductivity coefficient which depends on the temperature. In the second case we study the asymptotic behavior starting from an initial state in which each half of the space is at a different temperature. We find again a temperature profile which asymptotically obeys the heat equation with the thermal conductivity coefficient previously derived. From a mathematical point of view, the analysis of the invariant measure is made possible by studying a \u201ctime-reversed\u201d process related to a graphical representation of an associated process. This provides us with an explicit formula for then-fold correlation function and we study the limiting behavior using both this representation (for proving an exchangeability result) and a Donsker-type, spacetime renormalization procedure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01941803", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "81"
      }
    ], 
    "name": "Nonequilibrium measures which exhibit a temperature gradient: Study of a model", 
    "pagination": "127-147", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fca5e568bcfc3c74ede3bf0450e926be5a4e6a0481f514b423915403f90437dd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01941803"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053040699"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01941803", 
      "https://app.dimensions.ai/details/publication/pub.1053040699"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45372_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01941803"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01941803'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01941803'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01941803'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01941803'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01941803 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N35f8930111cb4d77a8704b19177710d9
4 schema:citation sg:pub.10.1007/bf00535015
5 sg:pub.10.1007/bf01014307
6 sg:pub.10.1007/bf01614132
7 sg:pub.10.1007/bf01654281
8 sg:pub.10.1007/bfb0068557
9 sg:pub.10.1007/bfb0097493
10 https://doi.org/10.1017/s0021900200032502
11 https://doi.org/10.1090/s0002-9947-1974-0375533-6
12 https://doi.org/10.1214/aop/1176995524
13 https://doi.org/10.2307/3212273
14 schema:datePublished 1981-09
15 schema:datePublishedReg 1981-09-01
16 schema:description We give some rules to define measures which could describe heat flow in homogeneous crystals. We then study a particular model which is explicitly solvable: the one dimensional nearest neighborhood Ising model. We analyze two cases. In the first one the spins at the two boundaries interact with reservoirs at different temperatures; in the thermodynamical limit the measure we introduce converges locally to Gibbs measures and a temperature profile is so derived. We obtain an explicit expression for the thermal conductivity coefficient which depends on the temperature. In the second case we study the asymptotic behavior starting from an initial state in which each half of the space is at a different temperature. We find again a temperature profile which asymptotically obeys the heat equation with the thermal conductivity coefficient previously derived. From a mathematical point of view, the analysis of the invariant measure is made possible by studying a “time-reversed” process related to a graphical representation of an associated process. This provides us with an explicit formula for then-fold correlation function and we study the limiting behavior using both this representation (for proving an exchangeability result) and a Donsker-type, spacetime renormalization procedure.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N5c5a49622e2d403496f072427029191c
21 N99ad1a99ef6a4250bd44a6cbdee890e7
22 sg:journal.1136216
23 schema:name Nonequilibrium measures which exhibit a temperature gradient: Study of a model
24 schema:pagination 127-147
25 schema:productId N79b335545e534b42b54cb43f47b112bc
26 N7afc1d86cdee4ed889951d4beb8fb918
27 Nef4811e123194286bffda18010416eed
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053040699
29 https://doi.org/10.1007/bf01941803
30 schema:sdDatePublished 2019-04-11T11:13
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nfd52516256404dfe968777c9d679b27c
33 schema:url http://link.springer.com/10.1007/BF01941803
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0986261076ce4010985d50238a1e54c1 rdf:first sg:person.015242521125.63
38 rdf:rest N4b52126a19e245bb9c15cf6fb20aaef0
39 N35f8930111cb4d77a8704b19177710d9 rdf:first sg:person.011175042001.54
40 rdf:rest N0986261076ce4010985d50238a1e54c1
41 N4b52126a19e245bb9c15cf6fb20aaef0 rdf:first sg:person.012323407145.44
42 rdf:rest N5fa45af2c0b74bcba7f35aa5dc3cce5b
43 N5c5a49622e2d403496f072427029191c schema:issueNumber 1
44 rdf:type schema:PublicationIssue
45 N5fa45af2c0b74bcba7f35aa5dc3cce5b rdf:first sg:person.012167647117.14
46 rdf:rest rdf:nil
47 N697966454d6f4f9381260db37fe8ee78 schema:name Centre de Mathématiques de l'Ecole Polytechnique, Plateau de Palaiseau, F-91128, Palaiseau Cedex, France
48 rdf:type schema:Organization
49 N79b335545e534b42b54cb43f47b112bc schema:name doi
50 schema:value 10.1007/bf01941803
51 rdf:type schema:PropertyValue
52 N7afc1d86cdee4ed889951d4beb8fb918 schema:name dimensions_id
53 schema:value pub.1053040699
54 rdf:type schema:PropertyValue
55 N99ad1a99ef6a4250bd44a6cbdee890e7 schema:volumeNumber 81
56 rdf:type schema:PublicationVolume
57 Na02f2a8af3644096bb038a989b49a09a schema:name Dipartimento di Matematica, Libera Università di Trento, I-38050, Povo (Trento), Italy
58 rdf:type schema:Organization
59 Nef4811e123194286bffda18010416eed schema:name readcube_id
60 schema:value fca5e568bcfc3c74ede3bf0450e926be5a4e6a0481f514b423915403f90437dd
61 rdf:type schema:PropertyValue
62 Nfd52516256404dfe968777c9d679b27c schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
65 schema:name Engineering
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
68 schema:name Interdisciplinary Engineering
69 rdf:type schema:DefinedTerm
70 sg:journal.1136216 schema:issn 0010-3616
71 1432-0916
72 schema:name Communications in Mathematical Physics
73 rdf:type schema:Periodical
74 sg:person.011175042001.54 schema:affiliation https://www.grid.ac/institutes/grid.11899.38
75 schema:familyName Galves
76 schema:givenName A.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011175042001.54
78 rdf:type schema:Person
79 sg:person.012167647117.14 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
80 schema:familyName Presutti
81 schema:givenName E.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012167647117.14
83 rdf:type schema:Person
84 sg:person.012323407145.44 schema:affiliation Na02f2a8af3644096bb038a989b49a09a
85 schema:familyName Marchioro
86 schema:givenName C.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012323407145.44
88 rdf:type schema:Person
89 sg:person.015242521125.63 schema:affiliation N697966454d6f4f9381260db37fe8ee78
90 schema:familyName Kipnis
91 schema:givenName C.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015242521125.63
93 rdf:type schema:Person
94 sg:pub.10.1007/bf00535015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001745066
95 https://doi.org/10.1007/bf00535015
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01014307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012333865
98 https://doi.org/10.1007/bf01014307
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf01614132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015305894
101 https://doi.org/10.1007/bf01614132
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01654281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040708710
104 https://doi.org/10.1007/bf01654281
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bfb0068557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015149964
107 https://doi.org/10.1007/bfb0068557
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bfb0097493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000743960
110 https://doi.org/10.1007/bfb0097493
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1017/s0021900200032502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037516797
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1090/s0002-9947-1974-0375533-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007973559
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1214/aop/1176995524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064405209
117 rdf:type schema:CreativeWork
118 https://doi.org/10.2307/3212273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070226495
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.11899.38 schema:alternateName University of Sao Paulo
121 schema:name Instituto de Matématica e Estatistica, Universidade de São Paulo, São Paulo, Brazil
122 rdf:type schema:Organization
123 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
124 schema:name Istituto Matematico, Università di Roma, I-00100, Roma, Italy
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...