An infinite family of type (m,n) sets in PG(2,q2), q a square View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-12

AUTHORS

Marialuisa J. de Resmini

ABSTRACT

A k-set of type (m,n), with k=(q+√q+1)(q2−q+1), m= 1+√q, n=q+√q+1, is proved to exist in a Galois plane PG(2,q2), q a square, and its construction is given. Thus, its complement, i.e. a ((q−√q)(q+√q+1)(q2−q+1); √q(q√q−√q−1),√q(q √q−1))-set, exists too. The special case q=16 is considered and the points of a (91;3,7)-set in PG(2,16) are exhibited. A generalization is given. More... »

PAGES

36-43

References to SciGraph publications

  • 1975-12. Ovals in the Desarguesian plane of order 16 in ANNALI DI MATEMATICA PURA ED APPLICATA (1923 -)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01917992

    DOI

    http://dx.doi.org/10.1007/bf01917992

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006131424


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Istituto Matematico \u201cG. Castelnuovo\u201d, Universit\u00e0 di Roma, 00185, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Istituto Matematico \u201cG. Castelnuovo\u201d, Universit\u00e0 di Roma, 00185, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Resmini", 
            "givenName": "Marialuisa J.", 
            "id": "sg:person.012712302064.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012712302064.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02410604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049387552", 
              "https://doi.org/10.1007/bf02410604"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1983-12", 
        "datePublishedReg": "1983-12-01", 
        "description": "A k-set of type (m,n), with k=(q+\u221aq+1)(q2\u2212q+1), m= 1+\u221aq, n=q+\u221aq+1, is proved to exist in a Galois plane PG(2,q2), q a square, and its construction is given. Thus, its complement, i.e. a ((q\u2212\u221aq)(q+\u221aq+1)(q2\u2212q+1); \u221aq(q\u221aq\u2212\u221aq\u22121),\u221aq(q \u221aq\u22121))-set, exists too. The special case q=16 is considered and the points of a (91;3,7)-set in PG(2,16) are exhibited. A generalization is given.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01917992", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136282", 
            "issn": [
              "0047-2468", 
              "1420-8997"
            ], 
            "name": "Journal of Geometry", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "keywords": [
          "types", 
          "complement", 
          "cases", 
          "family", 
          "point", 
          "set", 
          "plane", 
          "squares", 
          "set of types", 
          "construction", 
          "special case", 
          "generalization", 
          "infinite family", 
          "Galois plane"
        ], 
        "name": "An infinite family of type (m,n) sets in PG(2,q2), q a square", 
        "pagination": "36-43", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006131424"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01917992"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01917992", 
          "https://app.dimensions.ai/details/publication/pub.1006131424"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T21:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_168.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01917992"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01917992'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01917992'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01917992'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01917992'


     

    This table displays all metadata directly associated to this object as RDF triples.

    76 TRIPLES      22 PREDICATES      41 URIs      32 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01917992 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N21a2cdbd1328408f9b2d12e0febcd58e
    4 schema:citation sg:pub.10.1007/bf02410604
    5 schema:datePublished 1983-12
    6 schema:datePublishedReg 1983-12-01
    7 schema:description A k-set of type (m,n), with k=(q+√q+1)(q2−q+1), m= 1+√q, n=q+√q+1, is proved to exist in a Galois plane PG(2,q2), q a square, and its construction is given. Thus, its complement, i.e. a ((q−√q)(q+√q+1)(q2−q+1); √q(q√q−√q−1),√q(q √q−1))-set, exists too. The special case q=16 is considered and the points of a (91;3,7)-set in PG(2,16) are exhibited. A generalization is given.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N1abb9601553a4ab4a08c8b31c23a86b0
    12 N92a8ea27a4614232b83f1ac396ccc9ca
    13 sg:journal.1136282
    14 schema:keywords Galois plane
    15 cases
    16 complement
    17 construction
    18 family
    19 generalization
    20 infinite family
    21 plane
    22 point
    23 set
    24 set of types
    25 special case
    26 squares
    27 types
    28 schema:name An infinite family of type (m,n) sets in PG(2,q2), q a square
    29 schema:pagination 36-43
    30 schema:productId N51bf7cacbcac4c23a5c7770faca61179
    31 Nc5a6aa2fff764df1a7e5b5a1a1b40ff3
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006131424
    33 https://doi.org/10.1007/bf01917992
    34 schema:sdDatePublished 2022-06-01T21:58
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N133f95cb4c1d48378c3bef88f4b1b8b0
    37 schema:url https://doi.org/10.1007/bf01917992
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N133f95cb4c1d48378c3bef88f4b1b8b0 schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 N1abb9601553a4ab4a08c8b31c23a86b0 schema:issueNumber 1
    44 rdf:type schema:PublicationIssue
    45 N21a2cdbd1328408f9b2d12e0febcd58e rdf:first sg:person.012712302064.14
    46 rdf:rest rdf:nil
    47 N51bf7cacbcac4c23a5c7770faca61179 schema:name doi
    48 schema:value 10.1007/bf01917992
    49 rdf:type schema:PropertyValue
    50 N92a8ea27a4614232b83f1ac396ccc9ca schema:volumeNumber 20
    51 rdf:type schema:PublicationVolume
    52 Nc5a6aa2fff764df1a7e5b5a1a1b40ff3 schema:name dimensions_id
    53 schema:value pub.1006131424
    54 rdf:type schema:PropertyValue
    55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Mathematical Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Pure Mathematics
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1136282 schema:issn 0047-2468
    62 1420-8997
    63 schema:name Journal of Geometry
    64 schema:publisher Springer Nature
    65 rdf:type schema:Periodical
    66 sg:person.012712302064.14 schema:affiliation grid-institutes:grid.7841.a
    67 schema:familyName de Resmini
    68 schema:givenName Marialuisa J.
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012712302064.14
    70 rdf:type schema:Person
    71 sg:pub.10.1007/bf02410604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049387552
    72 https://doi.org/10.1007/bf02410604
    73 rdf:type schema:CreativeWork
    74 grid-institutes:grid.7841.a schema:alternateName Istituto Matematico “G. Castelnuovo”, Università di Roma, 00185, Rome, Italy
    75 schema:name Istituto Matematico “G. Castelnuovo”, Università di Roma, 00185, Rome, Italy
    76 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...