Thermally stimulated creep spectroscopy for the study of DGEBA-DDM networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-08

AUTHORS

J. Boye, J. J. Martinez, C. Lacabanne

ABSTRACT

During the past two decades, Thermally Stimulated Creep Recovery (TSCR) has been used successfully to study molecular mobility in polymers. The main feature of this technique is its quite good sensitiveness: the sample undergoes a shear stress, so that the subsequent strain is linear in a range larger than in elongation or compression experiments. Furthermore, the low equivalent frequency of TSCR permits the resolution of normally overlapping peaks.In this study, the TSCR technique has been used to investigate a series of DGEBA-DDM networks differing from the value of the amine-to-epoxy ratio which was systematically varied below stoichiometric composition. The magnitude of theΒ-mode (glassy region) is seen to decrease unexpectedly as the network gets looser, while its peak-temperature decreases. This result is interpreted in terms of ‘internal antiplasticization’. Moreover, we show that the important shift of theα-peak associated with the glass transition has an essentially entropic origin. More... »

PAGES

1775-1783

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01912208

DOI

http://dx.doi.org/10.1007/bf01912208

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041399261


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Physique des Solides (URA/CNRS/74), Universite Paul Sabatier, 31062, Toulouse Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.15781.3a", 
          "name": [
            "Laboratoire de Physique des Solides (URA/CNRS/74), Universite Paul Sabatier, 31062, Toulouse Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boye", 
        "givenName": "J.", 
        "id": "sg:person.011171014525.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011171014525.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Physique des Solides (URA/CNRS/74), Universite Paul Sabatier, 31062, Toulouse Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.15781.3a", 
          "name": [
            "Laboratoire de Physique des Solides (URA/CNRS/74), Universite Paul Sabatier, 31062, Toulouse Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martinez", 
        "givenName": "J. J.", 
        "id": "sg:person.010235032021.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010235032021.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Physique des Solides (URA/CNRS/74), Universite Paul Sabatier, 31062, Toulouse Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.15781.3a", 
          "name": [
            "Laboratoire de Physique des Solides (URA/CNRS/74), Universite Paul Sabatier, 31062, Toulouse Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lacabanne", 
        "givenName": "C.", 
        "id": "sg:person.01122643671.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122643671.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1295/polymj.4.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002633741", 
          "https://doi.org/10.1295/polymj.4.143"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-08", 
    "datePublishedReg": "1991-08-01", 
    "description": "During the past two decades, Thermally Stimulated Creep Recovery (TSCR) has been used successfully to study molecular mobility in polymers. The main feature of this technique is its quite good sensitiveness: the sample undergoes a shear stress, so that the subsequent strain is linear in a range larger than in elongation or compression experiments. Furthermore, the low equivalent frequency of TSCR permits the resolution of normally overlapping peaks.In this study, the TSCR technique has been used to investigate a series of DGEBA-DDM networks differing from the value of the amine-to-epoxy ratio which was systematically varied below stoichiometric composition. The magnitude of the\u0392-mode (glassy region) is seen to decrease unexpectedly as the network gets looser, while its peak-temperature decreases. This result is interpreted in terms of \u2018internal antiplasticization\u2019. Moreover, we show that the important shift of the\u03b1-peak associated with the glass transition has an essentially entropic origin.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01912208", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "keywords": [
      "molecular mobility", 
      "stoichiometric composition", 
      "glass transition", 
      "entropic origin", 
      "creep spectroscopy", 
      "polymers", 
      "good sensitiveness", 
      "amines", 
      "epoxy ratio", 
      "spectroscopy", 
      "Thermally", 
      "creep recovery", 
      "composition", 
      "antiplasticization", 
      "recovery", 
      "mobility", 
      "main features", 
      "technique", 
      "samples", 
      "range", 
      "elongation", 
      "peak", 
      "series", 
      "ratio", 
      "important shift", 
      "shift", 
      "transition", 
      "decades", 
      "features", 
      "sensitiveness", 
      "shear stress", 
      "experiments", 
      "resolution", 
      "study", 
      "network", 
      "values", 
      "magnitude", 
      "decrease", 
      "results", 
      "terms", 
      "origin", 
      "stress", 
      "subsequent strain", 
      "strains", 
      "compression experiments", 
      "frequency", 
      "TSCR", 
      "low equivalent frequency", 
      "equivalent frequency", 
      "TSCR technique", 
      "DGEBA-DDM networks", 
      "peak-temperature decreases", 
      "internal antiplasticization"
    ], 
    "name": "Thermally stimulated creep spectroscopy for the study of DGEBA-DDM networks", 
    "pagination": "1775-1783", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041399261"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01912208"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01912208", 
      "https://app.dimensions.ai/details/publication/pub.1041399261"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_232.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01912208"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01912208'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01912208'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01912208'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01912208'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      22 PREDICATES      82 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01912208 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 anzsrc-for:0306
4 anzsrc-for:0399
5 schema:author Ne6d81028d3984ee882c88ea7087dc923
6 schema:citation sg:pub.10.1295/polymj.4.143
7 schema:datePublished 1991-08
8 schema:datePublishedReg 1991-08-01
9 schema:description During the past two decades, Thermally Stimulated Creep Recovery (TSCR) has been used successfully to study molecular mobility in polymers. The main feature of this technique is its quite good sensitiveness: the sample undergoes a shear stress, so that the subsequent strain is linear in a range larger than in elongation or compression experiments. Furthermore, the low equivalent frequency of TSCR permits the resolution of normally overlapping peaks.In this study, the TSCR technique has been used to investigate a series of DGEBA-DDM networks differing from the value of the amine-to-epoxy ratio which was systematically varied below stoichiometric composition. The magnitude of theΒ-mode (glassy region) is seen to decrease unexpectedly as the network gets looser, while its peak-temperature decreases. This result is interpreted in terms of ‘internal antiplasticization’. Moreover, we show that the important shift of theα-peak associated with the glass transition has an essentially entropic origin.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N0609f34fbfc4484d95ae44af024b2e0f
14 Nadb4012d1edf45089f1b342d23eebee1
15 sg:journal.1294862
16 schema:keywords DGEBA-DDM networks
17 TSCR
18 TSCR technique
19 Thermally
20 amines
21 antiplasticization
22 composition
23 compression experiments
24 creep recovery
25 creep spectroscopy
26 decades
27 decrease
28 elongation
29 entropic origin
30 epoxy ratio
31 equivalent frequency
32 experiments
33 features
34 frequency
35 glass transition
36 good sensitiveness
37 important shift
38 internal antiplasticization
39 low equivalent frequency
40 magnitude
41 main features
42 mobility
43 molecular mobility
44 network
45 origin
46 peak
47 peak-temperature decreases
48 polymers
49 range
50 ratio
51 recovery
52 resolution
53 results
54 samples
55 sensitiveness
56 series
57 shear stress
58 shift
59 spectroscopy
60 stoichiometric composition
61 strains
62 stress
63 study
64 subsequent strain
65 technique
66 terms
67 transition
68 values
69 schema:name Thermally stimulated creep spectroscopy for the study of DGEBA-DDM networks
70 schema:pagination 1775-1783
71 schema:productId N2eb1036c418249a9985b1932e392fdc4
72 N315a86564be54f579d2e9630fdf583d7
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041399261
74 https://doi.org/10.1007/bf01912208
75 schema:sdDatePublished 2021-12-01T19:07
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N222252a596c341c58020a96dc8e84486
78 schema:url https://doi.org/10.1007/bf01912208
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N0609f34fbfc4484d95ae44af024b2e0f schema:volumeNumber 37
83 rdf:type schema:PublicationVolume
84 N222252a596c341c58020a96dc8e84486 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N2eb1036c418249a9985b1932e392fdc4 schema:name doi
87 schema:value 10.1007/bf01912208
88 rdf:type schema:PropertyValue
89 N315a86564be54f579d2e9630fdf583d7 schema:name dimensions_id
90 schema:value pub.1041399261
91 rdf:type schema:PropertyValue
92 Nadb4012d1edf45089f1b342d23eebee1 schema:issueNumber 8
93 rdf:type schema:PublicationIssue
94 Nbd8b2b12c99d494ba0d82b841edd52a6 rdf:first sg:person.010235032021.90
95 rdf:rest Ncbcc2a0aa8dc4a978e4928b78f248389
96 Ncbcc2a0aa8dc4a978e4928b78f248389 rdf:first sg:person.01122643671.07
97 rdf:rest rdf:nil
98 Ne6d81028d3984ee882c88ea7087dc923 rdf:first sg:person.011171014525.35
99 rdf:rest Nbd8b2b12c99d494ba0d82b841edd52a6
100 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
101 schema:name Chemical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
104 schema:name Macromolecular and Materials Chemistry
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Chemistry (incl. Structural)
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
110 schema:name Other Chemical Sciences
111 rdf:type schema:DefinedTerm
112 sg:journal.1294862 schema:issn 1388-6150
113 1572-8943
114 schema:name Journal of Thermal Analysis and Calorimetry
115 schema:publisher Springer Nature
116 rdf:type schema:Periodical
117 sg:person.010235032021.90 schema:affiliation grid-institutes:grid.15781.3a
118 schema:familyName Martinez
119 schema:givenName J. J.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010235032021.90
121 rdf:type schema:Person
122 sg:person.011171014525.35 schema:affiliation grid-institutes:grid.15781.3a
123 schema:familyName Boye
124 schema:givenName J.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011171014525.35
126 rdf:type schema:Person
127 sg:person.01122643671.07 schema:affiliation grid-institutes:grid.15781.3a
128 schema:familyName Lacabanne
129 schema:givenName C.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122643671.07
131 rdf:type schema:Person
132 sg:pub.10.1295/polymj.4.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002633741
133 https://doi.org/10.1295/polymj.4.143
134 rdf:type schema:CreativeWork
135 grid-institutes:grid.15781.3a schema:alternateName Laboratoire de Physique des Solides (URA/CNRS/74), Universite Paul Sabatier, 31062, Toulouse Cedex, France
136 schema:name Laboratoire de Physique des Solides (URA/CNRS/74), Universite Paul Sabatier, 31062, Toulouse Cedex, France
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...