Rational approximations of the integral of the Arrhenius function View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1977-06

AUTHORS

G. I. Senum, R. T. Yang

ABSTRACT

Rational approximations have been derived for the integral of the Arrhenius functiondT which is important in the kinetic analysis of thermogravimetric data. The first degree rational approximation is found to be equivalent to the Gorbachev approximation, i.e., RT2exp (−E/RT)/(E+2RT). The second degree rational approximation is more accurate than the Zsakó empirical approximation when E/RT < 1 and E/RT > 5. The third and higher degree rational approximations are found to be more accurate than any other previous approximation. More... »

PAGES

445-447

References to SciGraph publications

  • 1975-12. Criterion of the existence of compensation relationship for non-isothermal kinetics in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 1964-01. Kinetic Parameters from Thermogravimetric Data in NATURE
  • 1975-12. Empirical formula for the exponential integral in non-isothermal kinetics in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01903696

    DOI

    http://dx.doi.org/10.1007/bf01903696

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052287731


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Applied Science Brookhaven National Laboratory Upton, 11973, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Senum", 
            "givenName": "G. I.", 
            "id": "sg:person.011333044203.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011333044203.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Applied Science Brookhaven National Laboratory Upton, 11973, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "R. T.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01910139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014571446", 
              "https://doi.org/10.1007/bf01910139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/201068a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017774026", 
              "https://doi.org/10.1038/201068a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01910137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035081678", 
              "https://doi.org/10.1007/bf01910137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j100550a009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055672670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j100853a022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055682462"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1977-06", 
        "datePublishedReg": "1977-06-01", 
        "description": "Rational approximations have been derived for the integral of the Arrhenius functiondT which is important in the kinetic analysis of thermogravimetric data. The first degree rational approximation is found to be equivalent to the Gorbachev approximation, i.e., RT2exp (\u2212E/RT)/(E+2RT). The second degree rational approximation is more accurate than the Zsak\u00f3 empirical approximation when E/RT < 1 and E/RT > 5. The third and higher degree rational approximations are found to be more accurate than any other previous approximation.", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1007/bf01903696", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1294862", 
            "issn": [
              "1388-6150", 
              "1572-8943"
            ], 
            "name": "Journal of Thermal Analysis and Calorimetry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "name": "Rational approximations of the integral of the Arrhenius function", 
        "pagination": "445-447", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f9105bdf3b8fed114e3c2bcd0fe2fa8bbb494ae18b0890622e4ab79a04c27bc2"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01903696"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052287731"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01903696", 
          "https://app.dimensions.ai/details/publication/pub.1052287731"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000501.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01903696"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01903696'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01903696'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01903696'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01903696'


     

    This table displays all metadata directly associated to this object as RDF triples.

    86 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01903696 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N4375d0fdadd74e3e8478621b2017bc48
    4 schema:citation sg:pub.10.1007/bf01910137
    5 sg:pub.10.1007/bf01910139
    6 sg:pub.10.1038/201068a0
    7 https://doi.org/10.1021/j100550a009
    8 https://doi.org/10.1021/j100853a022
    9 schema:datePublished 1977-06
    10 schema:datePublishedReg 1977-06-01
    11 schema:description Rational approximations have been derived for the integral of the Arrhenius functiondT which is important in the kinetic analysis of thermogravimetric data. The first degree rational approximation is found to be equivalent to the Gorbachev approximation, i.e., RT2exp (−E/RT)/(E+2RT). The second degree rational approximation is more accurate than the Zsakó empirical approximation when E/RT < 1 and E/RT > 5. The third and higher degree rational approximations are found to be more accurate than any other previous approximation.
    12 schema:genre non_research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf Nf6d01dc540d442bdbd1094ef6a3c3ec5
    16 Nf6d11178966f4e63b43d458c8d25d69c
    17 sg:journal.1294862
    18 schema:name Rational approximations of the integral of the Arrhenius function
    19 schema:pagination 445-447
    20 schema:productId N898242253df84e73855ad58e17af2370
    21 Nafd8546f4389433a9e18acf1e0037ad3
    22 Nb397f7b7b0974981a7f5cdfc00679cc7
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052287731
    24 https://doi.org/10.1007/bf01903696
    25 schema:sdDatePublished 2019-04-10T17:29
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N9e06e6df0aec402ba4c14032e858e66b
    28 schema:url http://link.springer.com/10.1007/BF01903696
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N4375d0fdadd74e3e8478621b2017bc48 rdf:first sg:person.011333044203.81
    33 rdf:rest N88e935684736460dad9e41579ae5cc97
    34 N54ab69a16b7d40ed8a74bcadb187bbb8 schema:affiliation Nfd05ab43209b4077a70c73f4e3ad7ac6
    35 schema:familyName Yang
    36 schema:givenName R. T.
    37 rdf:type schema:Person
    38 N5d13b0241c8445a5bb1845feb2c51e53 schema:name Department of Applied Science Brookhaven National Laboratory Upton, 11973, New York, USA
    39 rdf:type schema:Organization
    40 N88e935684736460dad9e41579ae5cc97 rdf:first N54ab69a16b7d40ed8a74bcadb187bbb8
    41 rdf:rest rdf:nil
    42 N898242253df84e73855ad58e17af2370 schema:name readcube_id
    43 schema:value f9105bdf3b8fed114e3c2bcd0fe2fa8bbb494ae18b0890622e4ab79a04c27bc2
    44 rdf:type schema:PropertyValue
    45 N9e06e6df0aec402ba4c14032e858e66b schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 Nafd8546f4389433a9e18acf1e0037ad3 schema:name doi
    48 schema:value 10.1007/bf01903696
    49 rdf:type schema:PropertyValue
    50 Nb397f7b7b0974981a7f5cdfc00679cc7 schema:name dimensions_id
    51 schema:value pub.1052287731
    52 rdf:type schema:PropertyValue
    53 Nf6d01dc540d442bdbd1094ef6a3c3ec5 schema:volumeNumber 11
    54 rdf:type schema:PublicationVolume
    55 Nf6d11178966f4e63b43d458c8d25d69c schema:issueNumber 3
    56 rdf:type schema:PublicationIssue
    57 Nfd05ab43209b4077a70c73f4e3ad7ac6 schema:name Department of Applied Science Brookhaven National Laboratory Upton, 11973, New York, USA
    58 rdf:type schema:Organization
    59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Mathematical Sciences
    61 rdf:type schema:DefinedTerm
    62 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Numerical and Computational Mathematics
    64 rdf:type schema:DefinedTerm
    65 sg:journal.1294862 schema:issn 1388-6150
    66 1572-8943
    67 schema:name Journal of Thermal Analysis and Calorimetry
    68 rdf:type schema:Periodical
    69 sg:person.011333044203.81 schema:affiliation N5d13b0241c8445a5bb1845feb2c51e53
    70 schema:familyName Senum
    71 schema:givenName G. I.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011333044203.81
    73 rdf:type schema:Person
    74 sg:pub.10.1007/bf01910137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035081678
    75 https://doi.org/10.1007/bf01910137
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/bf01910139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014571446
    78 https://doi.org/10.1007/bf01910139
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1038/201068a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774026
    81 https://doi.org/10.1038/201068a0
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1021/j100550a009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055672670
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1021/j100853a022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055682462
    86 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...