Rational approximations of the integral of the Arrhenius function View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1977-06

AUTHORS

G. I. Senum, R. T. Yang

ABSTRACT

Rational approximations have been derived for the integral of the Arrhenius functiondT which is important in the kinetic analysis of thermogravimetric data. The first degree rational approximation is found to be equivalent to the Gorbachev approximation, i.e., RT2exp (−E/RT)/(E+2RT). The second degree rational approximation is more accurate than the Zsakó empirical approximation when E/RT < 1 and E/RT > 5. The third and higher degree rational approximations are found to be more accurate than any other previous approximation. More... »

PAGES

445-447

References to SciGraph publications

  • 1975-12. Criterion of the existence of compensation relationship for non-isothermal kinetics in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 1964-01. Kinetic Parameters from Thermogravimetric Data in NATURE
  • 1975-12. Empirical formula for the exponential integral in non-isothermal kinetics in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01903696

    DOI

    http://dx.doi.org/10.1007/bf01903696

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052287731


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Applied Science Brookhaven National Laboratory Upton, 11973, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Senum", 
            "givenName": "G. I.", 
            "id": "sg:person.011333044203.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011333044203.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Applied Science Brookhaven National Laboratory Upton, 11973, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "R. T.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01910139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014571446", 
              "https://doi.org/10.1007/bf01910139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/201068a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017774026", 
              "https://doi.org/10.1038/201068a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01910137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035081678", 
              "https://doi.org/10.1007/bf01910137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j100550a009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055672670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j100853a022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055682462"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1977-06", 
        "datePublishedReg": "1977-06-01", 
        "description": "Rational approximations have been derived for the integral of the Arrhenius functiondT which is important in the kinetic analysis of thermogravimetric data. The first degree rational approximation is found to be equivalent to the Gorbachev approximation, i.e., RT2exp (\u2212E/RT)/(E+2RT). The second degree rational approximation is more accurate than the Zsak\u00f3 empirical approximation when E/RT < 1 and E/RT > 5. The third and higher degree rational approximations are found to be more accurate than any other previous approximation.", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1007/bf01903696", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1294862", 
            "issn": [
              "1388-6150", 
              "1572-8943"
            ], 
            "name": "Journal of Thermal Analysis and Calorimetry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "name": "Rational approximations of the integral of the Arrhenius function", 
        "pagination": "445-447", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f9105bdf3b8fed114e3c2bcd0fe2fa8bbb494ae18b0890622e4ab79a04c27bc2"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01903696"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052287731"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01903696", 
          "https://app.dimensions.ai/details/publication/pub.1052287731"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000501.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01903696"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01903696'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01903696'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01903696'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01903696'


     

    This table displays all metadata directly associated to this object as RDF triples.

    86 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01903696 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N1718538390d6447f82a9803eefa23156
    4 schema:citation sg:pub.10.1007/bf01910137
    5 sg:pub.10.1007/bf01910139
    6 sg:pub.10.1038/201068a0
    7 https://doi.org/10.1021/j100550a009
    8 https://doi.org/10.1021/j100853a022
    9 schema:datePublished 1977-06
    10 schema:datePublishedReg 1977-06-01
    11 schema:description Rational approximations have been derived for the integral of the Arrhenius functiondT which is important in the kinetic analysis of thermogravimetric data. The first degree rational approximation is found to be equivalent to the Gorbachev approximation, i.e., RT2exp (−E/RT)/(E+2RT). The second degree rational approximation is more accurate than the Zsakó empirical approximation when E/RT < 1 and E/RT > 5. The third and higher degree rational approximations are found to be more accurate than any other previous approximation.
    12 schema:genre non_research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N49126bcc17d44595a0abfee88107d9f3
    16 N68a27ed90cbf4095ada55ecbd77a9388
    17 sg:journal.1294862
    18 schema:name Rational approximations of the integral of the Arrhenius function
    19 schema:pagination 445-447
    20 schema:productId N90daee3186ed4de3ba4f391965a1661d
    21 Nd842b2237a884a1090dee36f8ab2341d
    22 Nf473c1ab3f2f42a58781e6535c510a3f
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052287731
    24 https://doi.org/10.1007/bf01903696
    25 schema:sdDatePublished 2019-04-10T17:29
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N818bdafce83f43cd9dd234286c031b54
    28 schema:url http://link.springer.com/10.1007/BF01903696
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N10ce7b11332740d5ac14b2c71c5a23fa rdf:first N3326aa2a7f814c20985d538f7df46650
    33 rdf:rest rdf:nil
    34 N1718538390d6447f82a9803eefa23156 rdf:first sg:person.011333044203.81
    35 rdf:rest N10ce7b11332740d5ac14b2c71c5a23fa
    36 N3326aa2a7f814c20985d538f7df46650 schema:affiliation N9764c0f4f4c441769a9e4f12a682e6b3
    37 schema:familyName Yang
    38 schema:givenName R. T.
    39 rdf:type schema:Person
    40 N49126bcc17d44595a0abfee88107d9f3 schema:volumeNumber 11
    41 rdf:type schema:PublicationVolume
    42 N68a27ed90cbf4095ada55ecbd77a9388 schema:issueNumber 3
    43 rdf:type schema:PublicationIssue
    44 N818bdafce83f43cd9dd234286c031b54 schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 N90daee3186ed4de3ba4f391965a1661d schema:name dimensions_id
    47 schema:value pub.1052287731
    48 rdf:type schema:PropertyValue
    49 N9764c0f4f4c441769a9e4f12a682e6b3 schema:name Department of Applied Science Brookhaven National Laboratory Upton, 11973, New York, USA
    50 rdf:type schema:Organization
    51 Nd842b2237a884a1090dee36f8ab2341d schema:name readcube_id
    52 schema:value f9105bdf3b8fed114e3c2bcd0fe2fa8bbb494ae18b0890622e4ab79a04c27bc2
    53 rdf:type schema:PropertyValue
    54 Nf473c1ab3f2f42a58781e6535c510a3f schema:name doi
    55 schema:value 10.1007/bf01903696
    56 rdf:type schema:PropertyValue
    57 Nfe543855524b414190b30620c54f3eff schema:name Department of Applied Science Brookhaven National Laboratory Upton, 11973, New York, USA
    58 rdf:type schema:Organization
    59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Mathematical Sciences
    61 rdf:type schema:DefinedTerm
    62 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Numerical and Computational Mathematics
    64 rdf:type schema:DefinedTerm
    65 sg:journal.1294862 schema:issn 1388-6150
    66 1572-8943
    67 schema:name Journal of Thermal Analysis and Calorimetry
    68 rdf:type schema:Periodical
    69 sg:person.011333044203.81 schema:affiliation Nfe543855524b414190b30620c54f3eff
    70 schema:familyName Senum
    71 schema:givenName G. I.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011333044203.81
    73 rdf:type schema:Person
    74 sg:pub.10.1007/bf01910137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035081678
    75 https://doi.org/10.1007/bf01910137
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/bf01910139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014571446
    78 https://doi.org/10.1007/bf01910139
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1038/201068a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774026
    81 https://doi.org/10.1038/201068a0
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1021/j100550a009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055672670
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1021/j100853a022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055682462
    86 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...