The differential correction algorithm for generalized rational functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-12

AUTHORS

E. W. Cheney, M. J. D. Powell

ABSTRACT

The differential correction algorithm for generalized rational functions is described, and two theorems on convergence and order of convergence are given. An example shows that the order of convergence may deteriorate from superlinear to linear when a best generalized rational approximation does not exist.

PAGES

249-256

References to SciGraph publications

  • 1961-12. Two new algorithms for rational approximation in NUMERISCHE MATHEMATIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01890568

    DOI

    http://dx.doi.org/10.1007/bf01890568

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044749244


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "The University of Texas at Austin", 
              "id": "https://www.grid.ac/institutes/grid.89336.37", 
              "name": [
                "Department of Mathematics, University of Texas, 78712, Austin, Texas, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheney", 
            "givenName": "E. W.", 
            "id": "sg:person.011660230355.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011660230355.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 9EW, Cambridge, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Powell", 
            "givenName": "M. J. D.", 
            "id": "sg:person.07731545105.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1090/s0025-5718-1973-0331719-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006861279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-9045(81)90018-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007903231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01386002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044405376", 
              "https://doi.org/10.1007/bf01386002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0709044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062852049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0717053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062852694"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1987-12", 
        "datePublishedReg": "1987-12-01", 
        "description": "The differential correction algorithm for generalized rational functions is described, and two theorems on convergence and order of convergence are given. An example shows that the order of convergence may deteriorate from superlinear to linear when a best generalized rational approximation does not exist.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01890568", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135933", 
            "issn": [
              "0176-4276", 
              "1432-0940"
            ], 
            "name": "Constructive Approximation", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "The differential correction algorithm for generalized rational functions", 
        "pagination": "249-256", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d52853de99ea55e44ba3b72653b2973fe984061bf46030fe3e1b234df3560f92"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01890568"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044749244"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01890568", 
          "https://app.dimensions.ai/details/publication/pub.1044749244"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60375_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01890568"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01890568'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01890568'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01890568'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01890568'


     

    This table displays all metadata directly associated to this object as RDF triples.

    87 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01890568 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author Na036e77db9d241b9a1bf850d8a52ddac
    4 schema:citation sg:pub.10.1007/bf01386002
    5 https://doi.org/10.1016/0021-9045(81)90018-6
    6 https://doi.org/10.1090/s0025-5718-1973-0331719-0
    7 https://doi.org/10.1137/0709044
    8 https://doi.org/10.1137/0717053
    9 schema:datePublished 1987-12
    10 schema:datePublishedReg 1987-12-01
    11 schema:description The differential correction algorithm for generalized rational functions is described, and two theorems on convergence and order of convergence are given. An example shows that the order of convergence may deteriorate from superlinear to linear when a best generalized rational approximation does not exist.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N0914591756124e10a57d1173e1d53be5
    16 N6fdbae9a101544b7b80d22be76a07e97
    17 sg:journal.1135933
    18 schema:name The differential correction algorithm for generalized rational functions
    19 schema:pagination 249-256
    20 schema:productId N52a510a0190745a9ac8d379366a86f78
    21 N93c013322c5f442595a100ef2cbc947b
    22 Nd27b56057e7e4deb8ca9d7709a02aef0
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044749244
    24 https://doi.org/10.1007/bf01890568
    25 schema:sdDatePublished 2019-04-11T11:06
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher Nee94da55e5b644fa8329fd571e2e9beb
    28 schema:url http://link.springer.com/10.1007/BF01890568
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N0914591756124e10a57d1173e1d53be5 schema:volumeNumber 3
    33 rdf:type schema:PublicationVolume
    34 N227d763f312f44a6bca7bf7ed50b5b71 rdf:first sg:person.07731545105.07
    35 rdf:rest rdf:nil
    36 N52a510a0190745a9ac8d379366a86f78 schema:name readcube_id
    37 schema:value d52853de99ea55e44ba3b72653b2973fe984061bf46030fe3e1b234df3560f92
    38 rdf:type schema:PropertyValue
    39 N6fdbae9a101544b7b80d22be76a07e97 schema:issueNumber 1
    40 rdf:type schema:PublicationIssue
    41 N93c013322c5f442595a100ef2cbc947b schema:name dimensions_id
    42 schema:value pub.1044749244
    43 rdf:type schema:PropertyValue
    44 Na036e77db9d241b9a1bf850d8a52ddac rdf:first sg:person.011660230355.13
    45 rdf:rest N227d763f312f44a6bca7bf7ed50b5b71
    46 Nd27b56057e7e4deb8ca9d7709a02aef0 schema:name doi
    47 schema:value 10.1007/bf01890568
    48 rdf:type schema:PropertyValue
    49 Nee94da55e5b644fa8329fd571e2e9beb schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    52 schema:name Mathematical Sciences
    53 rdf:type schema:DefinedTerm
    54 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Numerical and Computational Mathematics
    56 rdf:type schema:DefinedTerm
    57 sg:journal.1135933 schema:issn 0176-4276
    58 1432-0940
    59 schema:name Constructive Approximation
    60 rdf:type schema:Periodical
    61 sg:person.011660230355.13 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
    62 schema:familyName Cheney
    63 schema:givenName E. W.
    64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011660230355.13
    65 rdf:type schema:Person
    66 sg:person.07731545105.07 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    67 schema:familyName Powell
    68 schema:givenName M. J. D.
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07
    70 rdf:type schema:Person
    71 sg:pub.10.1007/bf01386002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044405376
    72 https://doi.org/10.1007/bf01386002
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1016/0021-9045(81)90018-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007903231
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1090/s0025-5718-1973-0331719-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006861279
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1137/0709044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852049
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1137/0717053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852694
    81 rdf:type schema:CreativeWork
    82 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
    83 schema:name Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 9EW, Cambridge, England
    84 rdf:type schema:Organization
    85 https://www.grid.ac/institutes/grid.89336.37 schema:alternateName The University of Texas at Austin
    86 schema:name Department of Mathematics, University of Texas, 78712, Austin, Texas, USA
    87 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...