Approximate analysis of variance of spatially autocorrelated regional data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-03

AUTHORS

Pierre Legendre, Neal L. Oden, Robert R. Sokal, Alain Vaudor, Junhyong Kim

ABSTRACT

The classical method for analysis of variance of data divided in geographic regions is impaired if the data are spatially autocorrelated within regions, because the condition of independence of the observations is not met. Positive autocorrelation reduces within-group variability, thus artificially increasing the relative amount of among-group variance. Negative autocorrelation may produce the opposite effect. This difficulty can be viewed as a loss of an unknown number of degrees of freedom. Such problems can be found in population genetics, in ecology and in other branches of biology, as well as in economics, epidemiology, geography, geology, marketing, political science, and sociology. A computer-intensive method has been developed to overcome this problem in certain cases. It is based on the computation of pooled within-group sums of squares for sampled permutations of internally connected areas on a map. The paper presents the theory, the algorithms, and results obtained using this method. A computer program, written in PASCAL, is available. More... »

PAGES

53-75

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01889703

DOI

http://dx.doi.org/10.1007/bf01889703

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006348790


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Montreal", 
          "id": "https://www.grid.ac/institutes/grid.14848.31", 
          "name": [
            "D\u00e9partment de Sciences biologiques, Universit\u00e9 de Montr\u00e9al, Succursale A, C.P. 6128, H3C 3J7, Montr\u00e9al, Qu\u00e9bec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Legendre", 
        "givenName": "Pierre", 
        "id": "sg:person.011150411053.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011150411053.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stony Brook University", 
          "id": "https://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Community and Preventive Medicine, Health Sciences Center, State University of New York at Stony Brook, 11794-8036, Stony Brook, New York, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oden", 
        "givenName": "Neal L.", 
        "id": "sg:person.01025142664.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025142664.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stony Brook University", 
          "id": "https://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Ecology and Evolution, State University of New York at Stony Brook, 11794-5245, Stony Brook, New York, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sokal", 
        "givenName": "Robert R.", 
        "id": "sg:person.01305517101.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305517101.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montreal", 
          "id": "https://www.grid.ac/institutes/grid.14848.31", 
          "name": [
            "D\u00e9partment de Sciences biologiques, Universit\u00e9 de Montr\u00e9al, Succursale A, C.P. 6128, H3C 3J7, Montr\u00e9al, Qu\u00e9bec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vaudor", 
        "givenName": "Alain", 
        "id": "sg:person.012603755451.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012603755451.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stony Brook University", 
          "id": "https://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Ecology and Evolution, State University of New York at Stony Brook, 11794-5245, Stony Brook, New York, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Junhyong", 
        "id": "sg:person.016010517677.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016010517677.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/hdy.1968.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005276913", 
          "https://doi.org/10.1038/hdy.1968.79"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1968.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005276913", 
          "https://doi.org/10.1038/hdy.1968.79"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-4632.1978.tb00661.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012502068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-4632.1978.tb00661.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012502068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.1330790406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019704183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.1330790406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019704183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/f84-220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022804692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-4632.1979.tb00695.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043874791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-4632.1979.tb00695.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043874791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/f85-174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045048021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081518966", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471725218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109700916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471725218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109700916"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-03", 
    "datePublishedReg": "1990-03-01", 
    "description": "The classical method for analysis of variance of data divided in geographic regions is impaired if the data are spatially autocorrelated within regions, because the condition of independence of the observations is not met. Positive autocorrelation reduces within-group variability, thus artificially increasing the relative amount of among-group variance. Negative autocorrelation may produce the opposite effect. This difficulty can be viewed as a loss of an unknown number of degrees of freedom. Such problems can be found in population genetics, in ecology and in other branches of biology, as well as in economics, epidemiology, geography, geology, marketing, political science, and sociology. A computer-intensive method has been developed to overcome this problem in certain cases. It is based on the computation of pooled within-group sums of squares for sampled permutations of internally connected areas on a map. The paper presents the theory, the algorithms, and results obtained using this method. A computer program, written in PASCAL, is available.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01889703", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1126672", 
        "issn": [
          "0176-4268", 
          "1432-1343"
        ], 
        "name": "Journal of Classification", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Approximate analysis of variance of spatially autocorrelated regional data", 
    "pagination": "53-75", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e3dac37a9179629f60fbbbeef138721e37097289b471f9174a71b8689031c3c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01889703"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006348790"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01889703", 
      "https://app.dimensions.ai/details/publication/pub.1006348790"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43252_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01889703"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01889703'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01889703'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01889703'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01889703'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01889703 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N1d0b584559fc4be59767c007c9e417f2
4 schema:citation sg:pub.10.1038/hdy.1968.79
5 https://app.dimensions.ai/details/publication/pub.1081518966
6 https://doi.org/10.1002/0471725218
7 https://doi.org/10.1002/ajpa.1330790406
8 https://doi.org/10.1111/j.1538-4632.1978.tb00661.x
9 https://doi.org/10.1111/j.1538-4632.1979.tb00695.x
10 https://doi.org/10.1139/f84-220
11 https://doi.org/10.1139/f85-174
12 schema:datePublished 1990-03
13 schema:datePublishedReg 1990-03-01
14 schema:description The classical method for analysis of variance of data divided in geographic regions is impaired if the data are spatially autocorrelated within regions, because the condition of independence of the observations is not met. Positive autocorrelation reduces within-group variability, thus artificially increasing the relative amount of among-group variance. Negative autocorrelation may produce the opposite effect. This difficulty can be viewed as a loss of an unknown number of degrees of freedom. Such problems can be found in population genetics, in ecology and in other branches of biology, as well as in economics, epidemiology, geography, geology, marketing, political science, and sociology. A computer-intensive method has been developed to overcome this problem in certain cases. It is based on the computation of pooled within-group sums of squares for sampled permutations of internally connected areas on a map. The paper presents the theory, the algorithms, and results obtained using this method. A computer program, written in PASCAL, is available.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N358a88f24a534c379a891ce514e83b69
19 Nd8036ebed69443c3956a878526ad4770
20 sg:journal.1126672
21 schema:name Approximate analysis of variance of spatially autocorrelated regional data
22 schema:pagination 53-75
23 schema:productId N0d0d8f33a8984fd9850ef9a330d38341
24 N4b6d568a389347ada29ca17563f87c4d
25 Nfad2a638de67442b9229252193d95103
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006348790
27 https://doi.org/10.1007/bf01889703
28 schema:sdDatePublished 2019-04-11T10:54
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nb0d1d9f6449d4a8d99b438fa3aa02d3e
31 schema:url http://link.springer.com/10.1007/BF01889703
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0d0d8f33a8984fd9850ef9a330d38341 schema:name doi
36 schema:value 10.1007/bf01889703
37 rdf:type schema:PropertyValue
38 N1d0b584559fc4be59767c007c9e417f2 rdf:first sg:person.011150411053.39
39 rdf:rest N98921a31bfc84b4b8d57b38f98d678a5
40 N358a88f24a534c379a891ce514e83b69 schema:issueNumber 1
41 rdf:type schema:PublicationIssue
42 N4b6d568a389347ada29ca17563f87c4d schema:name dimensions_id
43 schema:value pub.1006348790
44 rdf:type schema:PropertyValue
45 N98921a31bfc84b4b8d57b38f98d678a5 rdf:first sg:person.01025142664.99
46 rdf:rest Ndda06569e3184af4a04c35525e8f611f
47 Nb0d1d9f6449d4a8d99b438fa3aa02d3e schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Nd8036ebed69443c3956a878526ad4770 schema:volumeNumber 7
50 rdf:type schema:PublicationVolume
51 Nda4c3d703c5f4280bdccf9379f6f1932 rdf:first sg:person.016010517677.27
52 rdf:rest rdf:nil
53 Ndda06569e3184af4a04c35525e8f611f rdf:first sg:person.01305517101.00
54 rdf:rest Nfae15b29394446349454719f3e0d97e4
55 Nfad2a638de67442b9229252193d95103 schema:name readcube_id
56 schema:value 1e3dac37a9179629f60fbbbeef138721e37097289b471f9174a71b8689031c3c
57 rdf:type schema:PropertyValue
58 Nfae15b29394446349454719f3e0d97e4 rdf:first sg:person.012603755451.28
59 rdf:rest Nda4c3d703c5f4280bdccf9379f6f1932
60 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
61 schema:name Information and Computing Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
64 schema:name Computation Theory and Mathematics
65 rdf:type schema:DefinedTerm
66 sg:journal.1126672 schema:issn 0176-4268
67 1432-1343
68 schema:name Journal of Classification
69 rdf:type schema:Periodical
70 sg:person.01025142664.99 schema:affiliation https://www.grid.ac/institutes/grid.36425.36
71 schema:familyName Oden
72 schema:givenName Neal L.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025142664.99
74 rdf:type schema:Person
75 sg:person.011150411053.39 schema:affiliation https://www.grid.ac/institutes/grid.14848.31
76 schema:familyName Legendre
77 schema:givenName Pierre
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011150411053.39
79 rdf:type schema:Person
80 sg:person.012603755451.28 schema:affiliation https://www.grid.ac/institutes/grid.14848.31
81 schema:familyName Vaudor
82 schema:givenName Alain
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012603755451.28
84 rdf:type schema:Person
85 sg:person.01305517101.00 schema:affiliation https://www.grid.ac/institutes/grid.36425.36
86 schema:familyName Sokal
87 schema:givenName Robert R.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305517101.00
89 rdf:type schema:Person
90 sg:person.016010517677.27 schema:affiliation https://www.grid.ac/institutes/grid.36425.36
91 schema:familyName Kim
92 schema:givenName Junhyong
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016010517677.27
94 rdf:type schema:Person
95 sg:pub.10.1038/hdy.1968.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005276913
96 https://doi.org/10.1038/hdy.1968.79
97 rdf:type schema:CreativeWork
98 https://app.dimensions.ai/details/publication/pub.1081518966 schema:CreativeWork
99 https://doi.org/10.1002/0471725218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109700916
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1002/ajpa.1330790406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019704183
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1111/j.1538-4632.1978.tb00661.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012502068
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1111/j.1538-4632.1979.tb00695.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043874791
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1139/f84-220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022804692
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1139/f85-174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045048021
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.14848.31 schema:alternateName University of Montreal
112 schema:name Départment de Sciences biologiques, Université de Montréal, Succursale A, C.P. 6128, H3C 3J7, Montréal, Québec, Canada
113 rdf:type schema:Organization
114 https://www.grid.ac/institutes/grid.36425.36 schema:alternateName Stony Brook University
115 schema:name Department of Community and Preventive Medicine, Health Sciences Center, State University of New York at Stony Brook, 11794-8036, Stony Brook, New York, U.S.A.
116 Department of Ecology and Evolution, State University of New York at Stony Brook, 11794-5245, Stony Brook, New York, U.S.A.
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...