Generation of a coherent state of the micromaser field View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-02

AUTHORS

Fam Le Kien, M. O. Scully, H. Walther

ABSTRACT

It is found that a coherent state of the cavity field can be generated in a micromaser with injected atoms in a coherent superposition of the upper and lower states. The dependence of the density matrix elements of the field on the number of injected atoms indicates that due to the same initial atomic coherence the emission of separately injected single atoms in the cavity is a cooperative process. More... »

PAGES

177-184

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01883622

DOI

http://dx.doi.org/10.1007/bf01883622

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009310418


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hanoi University", 
          "id": "https://www.grid.ac/institutes/grid.448980.9", 
          "name": [
            "Physics Department, Hanoi University, Hanoi, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Kien", 
        "givenName": "Fam", 
        "id": "sg:person.013247015524.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013247015524.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Quantum Optics", 
          "id": "https://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Center for Advanced Studies and Department of Physics and Astronomy, University of New Mexico, 87131, Albuquerque, New Mexico", 
            "Max-Planck-Institut f\u00fcr Quantenoptik, D-8046, Garching bei M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scully", 
        "givenName": "M. O.", 
        "id": "sg:person.01330235722.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330235722.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Max-Planck-Institut f\u00fcr Quantenoptik, D-8046, Garching bei M\u00fcnchen, Germany", 
            "Sektion Physik, Universit\u00e4t M\u00fcnchen, D-8046, Garching bei M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walther", 
        "givenName": "H.", 
        "id": "sg:person.016355234775.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355234775.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0370-1573(82)90102-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027952788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(82)90102-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027952788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(75)90169-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048011889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(75)90169-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048011889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.2.1170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.2.1170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.34.2032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060474947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.34.2032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060474947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.41.3867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060481209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.41.3867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060481209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061150430"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-02", 
    "datePublishedReg": "1993-02-01", 
    "description": "It is found that a coherent state of the cavity field can be generated in a micromaser with injected atoms in a coherent superposition of the upper and lower states. The dependence of the density matrix elements of the field on the number of injected atoms indicates that due to the same initial atomic coherence the emission of separately injected single atoms in the cavity is a cooperative process.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01883622", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297335", 
        "issn": [
          "0015-9018", 
          "1572-9516"
        ], 
        "name": "Foundations of Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Generation of a coherent state of the micromaser field", 
    "pagination": "177-184", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2c59bb30ab74f638d4ada657260b25af995f3881a6d05ac4b5d873304cec3084"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01883622"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009310418"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01883622", 
      "https://app.dimensions.ai/details/publication/pub.1009310418"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43262_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01883622"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01883622'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01883622'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01883622'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01883622'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01883622 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N4a673ecd674646d1a3c4abdb01600b01
4 schema:citation https://doi.org/10.1016/0030-4018(75)90169-8
5 https://doi.org/10.1016/0370-1573(82)90102-8
6 https://doi.org/10.1103/physreva.2.1170
7 https://doi.org/10.1103/physreva.34.2032
8 https://doi.org/10.1103/physreva.40.237
9 https://doi.org/10.1103/physreva.41.3867
10 https://doi.org/10.1109/3.968
11 schema:datePublished 1993-02
12 schema:datePublishedReg 1993-02-01
13 schema:description It is found that a coherent state of the cavity field can be generated in a micromaser with injected atoms in a coherent superposition of the upper and lower states. The dependence of the density matrix elements of the field on the number of injected atoms indicates that due to the same initial atomic coherence the emission of separately injected single atoms in the cavity is a cooperative process.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N41c7979f1ea2487c8cbda12f495b87a4
18 N8e0afc83ca9646559491baf99a4d9dec
19 sg:journal.1297335
20 schema:name Generation of a coherent state of the micromaser field
21 schema:pagination 177-184
22 schema:productId N2c04a75c0391482a908fdb1b4eed57b4
23 N4d46e12a8c2b41a5b8012adf0e3e59de
24 Na68e7eda460647d9a9cc374ab22d4752
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009310418
26 https://doi.org/10.1007/bf01883622
27 schema:sdDatePublished 2019-04-11T10:55
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Na067201e80f44281aedac6847b63ba8a
30 schema:url http://link.springer.com/10.1007/BF01883622
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N2c04a75c0391482a908fdb1b4eed57b4 schema:name dimensions_id
35 schema:value pub.1009310418
36 rdf:type schema:PropertyValue
37 N41c7979f1ea2487c8cbda12f495b87a4 schema:volumeNumber 23
38 rdf:type schema:PublicationVolume
39 N4a673ecd674646d1a3c4abdb01600b01 rdf:first sg:person.013247015524.80
40 rdf:rest N840cb0756a6649ee9848759cd479cef7
41 N4d46e12a8c2b41a5b8012adf0e3e59de schema:name readcube_id
42 schema:value 2c59bb30ab74f638d4ada657260b25af995f3881a6d05ac4b5d873304cec3084
43 rdf:type schema:PropertyValue
44 N840cb0756a6649ee9848759cd479cef7 rdf:first sg:person.01330235722.25
45 rdf:rest Nb2aac24413674cc5ac369d678f932028
46 N8e0afc83ca9646559491baf99a4d9dec schema:issueNumber 2
47 rdf:type schema:PublicationIssue
48 Na067201e80f44281aedac6847b63ba8a schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Na68e7eda460647d9a9cc374ab22d4752 schema:name doi
51 schema:value 10.1007/bf01883622
52 rdf:type schema:PropertyValue
53 Nb2aac24413674cc5ac369d678f932028 rdf:first sg:person.016355234775.61
54 rdf:rest rdf:nil
55 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
56 schema:name Physical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
59 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
60 rdf:type schema:DefinedTerm
61 sg:journal.1297335 schema:issn 0015-9018
62 1572-9516
63 schema:name Foundations of Physics
64 rdf:type schema:Periodical
65 sg:person.013247015524.80 schema:affiliation https://www.grid.ac/institutes/grid.448980.9
66 schema:familyName Le Kien
67 schema:givenName Fam
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013247015524.80
69 rdf:type schema:Person
70 sg:person.01330235722.25 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
71 schema:familyName Scully
72 schema:givenName M. O.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330235722.25
74 rdf:type schema:Person
75 sg:person.016355234775.61 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
76 schema:familyName Walther
77 schema:givenName H.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355234775.61
79 rdf:type schema:Person
80 https://doi.org/10.1016/0030-4018(75)90169-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048011889
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/0370-1573(82)90102-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027952788
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physreva.2.1170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467758
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physreva.34.2032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060474947
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/physreva.40.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060480025
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physreva.41.3867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060481209
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1109/3.968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061150430
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.448980.9 schema:alternateName Hanoi University
95 schema:name Physics Department, Hanoi University, Hanoi, Vietnam
96 rdf:type schema:Organization
97 https://www.grid.ac/institutes/grid.450272.6 schema:alternateName Max Planck Institute of Quantum Optics
98 schema:name Center for Advanced Studies and Department of Physics and Astronomy, University of New Mexico, 87131, Albuquerque, New Mexico
99 Max-Planck-Institut für Quantenoptik, D-8046, Garching bei München, Germany
100 rdf:type schema:Organization
101 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
102 schema:name Max-Planck-Institut für Quantenoptik, D-8046, Garching bei München, Germany
103 Sektion Physik, Universität München, D-8046, Garching bei München, Germany
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...