Quantum mechanics without probability amplitudes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-04

AUTHORS

William K. Wootters

ABSTRACT

First steps are taken toward a formulation of quantum mechanics which avoids the use of probability amplitudes and is expressed entirely in terms of observable probabilities. Quantum states are represented not by state vectors or density matrices but by “probability tables,” which contain only the probabilities of the outcomes of certain special measurements. The rule for computing transition probabilities, normally given by the squared modulus of the inner product of two state vectors, is re-expressed in terms of probability tables. The new version of the rule is surprisingly simple, especially when one considers that the notion of complex phases, so crucial in the evaluation of inner products, is entirely absent from the representation of states used here. More... »

PAGES

391-405

Journal

TITLE

Foundations of Physics

ISSUE

4

VOLUME

16

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01882696

DOI

http://dx.doi.org/10.1007/bf01882696

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050126125


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Williams College", 
          "id": "https://www.grid.ac/institutes/grid.268275.c", 
          "name": [
            "Department of Physics and Astronomy, Williams College, 01267, Williamstown, Massachusetts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wootters", 
        "givenName": "William K.", 
        "id": "sg:person.012464441160.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012464441160.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0305-4470/14/12/019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059065544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.165.1434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060437213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.165.1434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060437213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physicsphysiquefizika.1.195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101010389"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1986-04", 
    "datePublishedReg": "1986-04-01", 
    "description": "First steps are taken toward a formulation of quantum mechanics which avoids the use of probability amplitudes and is expressed entirely in terms of observable probabilities. Quantum states are represented not by state vectors or density matrices but by \u201cprobability tables,\u201d which contain only the probabilities of the outcomes of certain special measurements. The rule for computing transition probabilities, normally given by the squared modulus of the inner product of two state vectors, is re-expressed in terms of probability tables. The new version of the rule is surprisingly simple, especially when one considers that the notion of complex phases, so crucial in the evaluation of inner products, is entirely absent from the representation of states used here.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01882696", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297335", 
        "issn": [
          "0015-9018", 
          "1572-9516"
        ], 
        "name": "Foundations of Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Quantum mechanics without probability amplitudes", 
    "pagination": "391-405", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eec93b81031868be2b069b97366ca0615b0464b60d2f617af5292a394d361034"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01882696"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050126125"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01882696", 
      "https://app.dimensions.ai/details/publication/pub.1050126125"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43226_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01882696"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01882696'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01882696'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01882696'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01882696'


 

This table displays all metadata directly associated to this object as RDF triples.

70 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01882696 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N44292c5e4cf447ddbad5c06eb35a747d
4 schema:citation https://doi.org/10.1088/0305-4470/14/12/019
5 https://doi.org/10.1103/physicsphysiquefizika.1.195
6 https://doi.org/10.1103/physrev.165.1434
7 schema:datePublished 1986-04
8 schema:datePublishedReg 1986-04-01
9 schema:description First steps are taken toward a formulation of quantum mechanics which avoids the use of probability amplitudes and is expressed entirely in terms of observable probabilities. Quantum states are represented not by state vectors or density matrices but by “probability tables,” which contain only the probabilities of the outcomes of certain special measurements. The rule for computing transition probabilities, normally given by the squared modulus of the inner product of two state vectors, is re-expressed in terms of probability tables. The new version of the rule is surprisingly simple, especially when one considers that the notion of complex phases, so crucial in the evaluation of inner products, is entirely absent from the representation of states used here.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N267b6173e0bf460c999a8d7b9f9c79d4
14 N9f816e2a05bd41d9949e156a366078ac
15 sg:journal.1297335
16 schema:name Quantum mechanics without probability amplitudes
17 schema:pagination 391-405
18 schema:productId N11069c11dad94db88dc47b1800654b48
19 N3be0cdcd2e294daa8a9d15a2d3a59b87
20 N5ace28dc16ec4d0683faf332bc6a8a31
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050126125
22 https://doi.org/10.1007/bf01882696
23 schema:sdDatePublished 2019-04-11T10:52
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N0ce3e52533a94e2bb289722ab076ad49
26 schema:url http://link.springer.com/10.1007/BF01882696
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N0ce3e52533a94e2bb289722ab076ad49 schema:name Springer Nature - SN SciGraph project
31 rdf:type schema:Organization
32 N11069c11dad94db88dc47b1800654b48 schema:name readcube_id
33 schema:value eec93b81031868be2b069b97366ca0615b0464b60d2f617af5292a394d361034
34 rdf:type schema:PropertyValue
35 N267b6173e0bf460c999a8d7b9f9c79d4 schema:volumeNumber 16
36 rdf:type schema:PublicationVolume
37 N3be0cdcd2e294daa8a9d15a2d3a59b87 schema:name dimensions_id
38 schema:value pub.1050126125
39 rdf:type schema:PropertyValue
40 N44292c5e4cf447ddbad5c06eb35a747d rdf:first sg:person.012464441160.24
41 rdf:rest rdf:nil
42 N5ace28dc16ec4d0683faf332bc6a8a31 schema:name doi
43 schema:value 10.1007/bf01882696
44 rdf:type schema:PropertyValue
45 N9f816e2a05bd41d9949e156a366078ac schema:issueNumber 4
46 rdf:type schema:PublicationIssue
47 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
48 schema:name Physical Sciences
49 rdf:type schema:DefinedTerm
50 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
51 schema:name Quantum Physics
52 rdf:type schema:DefinedTerm
53 sg:journal.1297335 schema:issn 0015-9018
54 1572-9516
55 schema:name Foundations of Physics
56 rdf:type schema:Periodical
57 sg:person.012464441160.24 schema:affiliation https://www.grid.ac/institutes/grid.268275.c
58 schema:familyName Wootters
59 schema:givenName William K.
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012464441160.24
61 rdf:type schema:Person
62 https://doi.org/10.1088/0305-4470/14/12/019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059065544
63 rdf:type schema:CreativeWork
64 https://doi.org/10.1103/physicsphysiquefizika.1.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101010389
65 rdf:type schema:CreativeWork
66 https://doi.org/10.1103/physrev.165.1434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060437213
67 rdf:type schema:CreativeWork
68 https://www.grid.ac/institutes/grid.268275.c schema:alternateName Williams College
69 schema:name Department of Physics and Astronomy, Williams College, 01267, Williamstown, Massachusetts
70 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...