Isotropic solutions of the Einstein-Boltzmann equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1971-03

AUTHORS

R. Treciokas, G. F. R. Ellis

ABSTRACT

It is shown that in all solutions of the Einstein-Boltzmann equations in which the particle distribution function is isotropic about some 4-velocity field, the distortion of that velocity field vanishes; further, either its expansion or its rotation vanishes. We discuss briefly further kinetic solutions in which the energy-momentum tensor has a perfect fluid form. More... »

PAGES

1-22

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01877593

DOI

http://dx.doi.org/10.1007/bf01877593

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028146483


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics and Theoretical Physics, Cambridge, England", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Applied Mathematics and Theoretical Physics, Cambridge, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Treciokas", 
        "givenName": "R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics and Theoretical Physics, Cambridge, England", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Applied Mathematics and Theoretical Physics, Cambridge, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ellis", 
        "givenName": "G. F. R.", 
        "id": "sg:person.011423221131.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011423221131.55"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1971-03", 
    "datePublishedReg": "1971-03-01", 
    "description": "It is shown that in all solutions of the Einstein-Boltzmann equations in which the particle distribution function is isotropic about some 4-velocity field, the distortion of that velocity field vanishes; further, either its expansion or its rotation vanishes. We discuss briefly further kinetic solutions in which the energy-momentum tensor has a perfect fluid form.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01877593", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "keywords": [
      "velocity field", 
      "particle distribution function", 
      "kinetic solution", 
      "fluid form", 
      "solution", 
      "equations", 
      "perfect fluid form", 
      "distribution function", 
      "field", 
      "isotropic solution", 
      "distortion", 
      "tensor", 
      "rotation", 
      "expansion", 
      "Einstein-Boltzmann equations", 
      "function", 
      "form", 
      "energy-momentum tensor"
    ], 
    "name": "Isotropic solutions of the Einstein-Boltzmann equations", 
    "pagination": "1-22", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028146483"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01877593"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01877593", 
      "https://app.dimensions.ai/details/publication/pub.1028146483"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_140.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01877593"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01877593'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01877593'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01877593'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01877593'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      20 PREDICATES      43 URIs      35 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01877593 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N8dbec758352e4f368eec71e06276c3d9
4 schema:datePublished 1971-03
5 schema:datePublishedReg 1971-03-01
6 schema:description It is shown that in all solutions of the Einstein-Boltzmann equations in which the particle distribution function is isotropic about some 4-velocity field, the distortion of that velocity field vanishes; further, either its expansion or its rotation vanishes. We discuss briefly further kinetic solutions in which the energy-momentum tensor has a perfect fluid form.
7 schema:genre article
8 schema:isAccessibleForFree true
9 schema:isPartOf Nb1c0bb326aa94f56aa3a4773b7dfbd56
10 Ndf055fd3b16748019f8e0133bc6cee0b
11 sg:journal.1136216
12 schema:keywords Einstein-Boltzmann equations
13 distortion
14 distribution function
15 energy-momentum tensor
16 equations
17 expansion
18 field
19 fluid form
20 form
21 function
22 isotropic solution
23 kinetic solution
24 particle distribution function
25 perfect fluid form
26 rotation
27 solution
28 tensor
29 velocity field
30 schema:name Isotropic solutions of the Einstein-Boltzmann equations
31 schema:pagination 1-22
32 schema:productId N084f5ec7dd364a9884c12488bc304344
33 N24aec9b4adc34ffd9df1708561f34b04
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028146483
35 https://doi.org/10.1007/bf01877593
36 schema:sdDatePublished 2022-08-04T16:49
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N418853176189491ca28c2193de3dbb39
39 schema:url https://doi.org/10.1007/bf01877593
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N084f5ec7dd364a9884c12488bc304344 schema:name dimensions_id
44 schema:value pub.1028146483
45 rdf:type schema:PropertyValue
46 N24aec9b4adc34ffd9df1708561f34b04 schema:name doi
47 schema:value 10.1007/bf01877593
48 rdf:type schema:PropertyValue
49 N2b40585f3ac1442cab9be3e5e1c466a7 rdf:first sg:person.011423221131.55
50 rdf:rest rdf:nil
51 N418853176189491ca28c2193de3dbb39 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N8dbec758352e4f368eec71e06276c3d9 rdf:first Nb0686f42aa3e486db3712fb577243881
54 rdf:rest N2b40585f3ac1442cab9be3e5e1c466a7
55 Nb0686f42aa3e486db3712fb577243881 schema:affiliation grid-institutes:grid.5335.0
56 schema:familyName Treciokas
57 schema:givenName R.
58 rdf:type schema:Person
59 Nb1c0bb326aa94f56aa3a4773b7dfbd56 schema:issueNumber 1
60 rdf:type schema:PublicationIssue
61 Ndf055fd3b16748019f8e0133bc6cee0b schema:volumeNumber 23
62 rdf:type schema:PublicationVolume
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
67 schema:name Pure Mathematics
68 rdf:type schema:DefinedTerm
69 sg:journal.1136216 schema:issn 0010-3616
70 1432-0916
71 schema:name Communications in Mathematical Physics
72 schema:publisher Springer Nature
73 rdf:type schema:Periodical
74 sg:person.011423221131.55 schema:affiliation grid-institutes:grid.5335.0
75 schema:familyName Ellis
76 schema:givenName G. F. R.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011423221131.55
78 rdf:type schema:Person
79 grid-institutes:grid.5335.0 schema:alternateName Department of Applied Mathematics and Theoretical Physics, Cambridge, England
80 schema:name Department of Applied Mathematics and Theoretical Physics, Cambridge, England
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...