Ontology type: schema:ScholarlyArticle Open Access: True
1972-06
AUTHORS ABSTRACTIt is assumed that the singularities which occur in gravitational collapse are not visible from outside but are hidden behind an event horizon. This means that one can still predict the future outside the event horizon. A black hole on a spacelike surface is defined to be a connected component of the region of the surface bounded by the event horizon. As time increase, black holes may merge together but can never bifurcate. A black hole would be expected to settle down to a stationary state. It is shown that a stationary black hole must have topologically spherical boundary and must be axisymmetric if it is rotating. These results together with those of Israel and Carter go most of the way towards establishing the conjecture that any stationary black hole is a Kerr solution. Using this conjecture and the result that the surface area of black holes can never decrease, one can place certain limits on the amount of energy that can be extracted from black holes. More... »
PAGES152-166
http://scigraph.springernature.com/pub.10.1007/bf01877517
DOIhttp://dx.doi.org/10.1007/bf01877517
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1042906989
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Astronomical and Space Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Theoretical Astronomy, University of Cambridge, Cambridge, England",
"id": "http://www.grid.ac/institutes/grid.5335.0",
"name": [
"Institute of Theoretical Astronomy, University of Cambridge, Cambridge, England"
],
"type": "Organization"
},
"familyName": "Hawking",
"givenName": "S. W.",
"id": "sg:person.012212614165.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01649448",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052904713",
"https://doi.org/10.1007/bf01649448"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01645859",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040532386",
"https://doi.org/10.1007/bf01645859"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01647092",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007546597",
"https://doi.org/10.1007/bf01647092"
],
"type": "CreativeWork"
}
],
"datePublished": "1972-06",
"datePublishedReg": "1972-06-01",
"description": "It is assumed that the singularities which occur in gravitational collapse are not visible from outside but are hidden behind an event horizon. This means that one can still predict the future outside the event horizon. A black hole on a spacelike surface is defined to be a connected component of the region of the surface bounded by the event horizon. As time increase, black holes may merge together but can never bifurcate. A black hole would be expected to settle down to a stationary state. It is shown that a stationary black hole must have topologically spherical boundary and must be axisymmetric if it is rotating. These results together with those of Israel and Carter go most of the way towards establishing the conjecture that any stationary black hole is a Kerr solution. Using this conjecture and the result that the surface area of black holes can never decrease, one can place certain limits on the amount of energy that can be extracted from black holes.",
"genre": "article",
"id": "sg:pub.10.1007/bf01877517",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136216",
"issn": [
"0010-3616",
"1432-0916"
],
"name": "Communications in Mathematical Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "25"
}
],
"keywords": [
"black holes",
"stationary black holes",
"event horizon",
"general relativity",
"gravitational collapse",
"holes",
"stationary state",
"Kerr solution",
"amount of energy",
"relativity",
"time increases",
"surface",
"energy",
"spacelike surfaces",
"certain limits",
"singularity",
"state",
"limit",
"horizon",
"collapse",
"region",
"results",
"surface area",
"conjecture",
"components",
"solution",
"way",
"increase",
"amount",
"future",
"Carter",
"area",
"Israel"
],
"name": "Black holes in general relativity",
"pagination": "152-166",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1042906989"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01877517"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01877517",
"https://app.dimensions.ai/details/publication/pub.1042906989"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:49",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_150.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf01877517"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01877517'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01877517'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01877517'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01877517'
This table displays all metadata directly associated to this object as RDF triples.
102 TRIPLES
21 PREDICATES
61 URIs
50 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf01877517 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0201 |
3 | ″ | schema:author | Nfd8d9af99ef5404f8090c7eb4c341159 |
4 | ″ | schema:citation | sg:pub.10.1007/bf01645859 |
5 | ″ | ″ | sg:pub.10.1007/bf01647092 |
6 | ″ | ″ | sg:pub.10.1007/bf01649448 |
7 | ″ | schema:datePublished | 1972-06 |
8 | ″ | schema:datePublishedReg | 1972-06-01 |
9 | ″ | schema:description | It is assumed that the singularities which occur in gravitational collapse are not visible from outside but are hidden behind an event horizon. This means that one can still predict the future outside the event horizon. A black hole on a spacelike surface is defined to be a connected component of the region of the surface bounded by the event horizon. As time increase, black holes may merge together but can never bifurcate. A black hole would be expected to settle down to a stationary state. It is shown that a stationary black hole must have topologically spherical boundary and must be axisymmetric if it is rotating. These results together with those of Israel and Carter go most of the way towards establishing the conjecture that any stationary black hole is a Kerr solution. Using this conjecture and the result that the surface area of black holes can never decrease, one can place certain limits on the amount of energy that can be extracted from black holes. |
10 | ″ | schema:genre | article |
11 | ″ | schema:isAccessibleForFree | true |
12 | ″ | schema:isPartOf | Nf47b01bea3f746d4ba3bc9d19561acdd |
13 | ″ | ″ | Nfd65398807bb40efb82027e6d5fb66bc |
14 | ″ | ″ | sg:journal.1136216 |
15 | ″ | schema:keywords | Carter |
16 | ″ | ″ | Israel |
17 | ″ | ″ | Kerr solution |
18 | ″ | ″ | amount |
19 | ″ | ″ | amount of energy |
20 | ″ | ″ | area |
21 | ″ | ″ | black holes |
22 | ″ | ″ | certain limits |
23 | ″ | ″ | collapse |
24 | ″ | ″ | components |
25 | ″ | ″ | conjecture |
26 | ″ | ″ | energy |
27 | ″ | ″ | event horizon |
28 | ″ | ″ | future |
29 | ″ | ″ | general relativity |
30 | ″ | ″ | gravitational collapse |
31 | ″ | ″ | holes |
32 | ″ | ″ | horizon |
33 | ″ | ″ | increase |
34 | ″ | ″ | limit |
35 | ″ | ″ | region |
36 | ″ | ″ | relativity |
37 | ″ | ″ | results |
38 | ″ | ″ | singularity |
39 | ″ | ″ | solution |
40 | ″ | ″ | spacelike surfaces |
41 | ″ | ″ | state |
42 | ″ | ″ | stationary black holes |
43 | ″ | ″ | stationary state |
44 | ″ | ″ | surface |
45 | ″ | ″ | surface area |
46 | ″ | ″ | time increases |
47 | ″ | ″ | way |
48 | ″ | schema:name | Black holes in general relativity |
49 | ″ | schema:pagination | 152-166 |
50 | ″ | schema:productId | N9e287e22e179483e91366b47c887eeb1 |
51 | ″ | ″ | Nc832d1b2717f4f5a8ae06320ec038283 |
52 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042906989 |
53 | ″ | ″ | https://doi.org/10.1007/bf01877517 |
54 | ″ | schema:sdDatePublished | 2022-08-04T16:49 |
55 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
56 | ″ | schema:sdPublisher | Nbfdbefce817a4a1b9848648db45505bb |
57 | ″ | schema:url | https://doi.org/10.1007/bf01877517 |
58 | ″ | sgo:license | sg:explorer/license/ |
59 | ″ | sgo:sdDataset | articles |
60 | ″ | rdf:type | schema:ScholarlyArticle |
61 | N9e287e22e179483e91366b47c887eeb1 | schema:name | dimensions_id |
62 | ″ | schema:value | pub.1042906989 |
63 | ″ | rdf:type | schema:PropertyValue |
64 | Nbfdbefce817a4a1b9848648db45505bb | schema:name | Springer Nature - SN SciGraph project |
65 | ″ | rdf:type | schema:Organization |
66 | Nc832d1b2717f4f5a8ae06320ec038283 | schema:name | doi |
67 | ″ | schema:value | 10.1007/bf01877517 |
68 | ″ | rdf:type | schema:PropertyValue |
69 | Nf47b01bea3f746d4ba3bc9d19561acdd | schema:volumeNumber | 25 |
70 | ″ | rdf:type | schema:PublicationVolume |
71 | Nfd65398807bb40efb82027e6d5fb66bc | schema:issueNumber | 2 |
72 | ″ | rdf:type | schema:PublicationIssue |
73 | Nfd8d9af99ef5404f8090c7eb4c341159 | rdf:first | sg:person.012212614165.22 |
74 | ″ | rdf:rest | rdf:nil |
75 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
76 | ″ | schema:name | Physical Sciences |
77 | ″ | rdf:type | schema:DefinedTerm |
78 | anzsrc-for:0201 | schema:inDefinedTermSet | anzsrc-for: |
79 | ″ | schema:name | Astronomical and Space Sciences |
80 | ″ | rdf:type | schema:DefinedTerm |
81 | sg:journal.1136216 | schema:issn | 0010-3616 |
82 | ″ | ″ | 1432-0916 |
83 | ″ | schema:name | Communications in Mathematical Physics |
84 | ″ | schema:publisher | Springer Nature |
85 | ″ | rdf:type | schema:Periodical |
86 | sg:person.012212614165.22 | schema:affiliation | grid-institutes:grid.5335.0 |
87 | ″ | schema:familyName | Hawking |
88 | ″ | schema:givenName | S. W. |
89 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22 |
90 | ″ | rdf:type | schema:Person |
91 | sg:pub.10.1007/bf01645859 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040532386 |
92 | ″ | ″ | https://doi.org/10.1007/bf01645859 |
93 | ″ | rdf:type | schema:CreativeWork |
94 | sg:pub.10.1007/bf01647092 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007546597 |
95 | ″ | ″ | https://doi.org/10.1007/bf01647092 |
96 | ″ | rdf:type | schema:CreativeWork |
97 | sg:pub.10.1007/bf01649448 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1052904713 |
98 | ″ | ″ | https://doi.org/10.1007/bf01649448 |
99 | ″ | rdf:type | schema:CreativeWork |
100 | grid-institutes:grid.5335.0 | schema:alternateName | Institute of Theoretical Astronomy, University of Cambridge, Cambridge, England |
101 | ″ | schema:name | Institute of Theoretical Astronomy, University of Cambridge, Cambridge, England |
102 | ″ | rdf:type | schema:Organization |