Black holes in general relativity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1972-06

AUTHORS

S. W. Hawking

ABSTRACT

It is assumed that the singularities which occur in gravitational collapse are not visible from outside but are hidden behind an event horizon. This means that one can still predict the future outside the event horizon. A black hole on a spacelike surface is defined to be a connected component of the region of the surface bounded by the event horizon. As time increase, black holes may merge together but can never bifurcate. A black hole would be expected to settle down to a stationary state. It is shown that a stationary black hole must have topologically spherical boundary and must be axisymmetric if it is rotating. These results together with those of Israel and Carter go most of the way towards establishing the conjecture that any stationary black hole is a Kerr solution. Using this conjecture and the result that the surface area of black holes can never decrease, one can place certain limits on the amount of energy that can be extracted from black holes. More... »

PAGES

152-166

References to SciGraph publications

  • 1970-12. The conservation of matter in general relativity in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1968-09. Event horizons in static electrovac space-times in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1970-09. The commutation property of a stationary, axisymmetric system in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01877517

    DOI

    http://dx.doi.org/10.1007/bf01877517

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042906989


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Theoretical Astronomy, University of Cambridge, Cambridge, England", 
              "id": "http://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Institute of Theoretical Astronomy, University of Cambridge, Cambridge, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hawking", 
            "givenName": "S. W.", 
            "id": "sg:person.012212614165.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01649448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052904713", 
              "https://doi.org/10.1007/bf01649448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01645859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040532386", 
              "https://doi.org/10.1007/bf01645859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01647092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007546597", 
              "https://doi.org/10.1007/bf01647092"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1972-06", 
        "datePublishedReg": "1972-06-01", 
        "description": "It is assumed that the singularities which occur in gravitational collapse are not visible from outside but are hidden behind an event horizon. This means that one can still predict the future outside the event horizon. A black hole on a spacelike surface is defined to be a connected component of the region of the surface bounded by the event horizon. As time increase, black holes may merge together but can never bifurcate. A black hole would be expected to settle down to a stationary state. It is shown that a stationary black hole must have topologically spherical boundary and must be axisymmetric if it is rotating. These results together with those of Israel and Carter go most of the way towards establishing the conjecture that any stationary black hole is a Kerr solution. Using this conjecture and the result that the surface area of black holes can never decrease, one can place certain limits on the amount of energy that can be extracted from black holes.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01877517", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "keywords": [
          "black holes", 
          "stationary black holes", 
          "event horizon", 
          "general relativity", 
          "gravitational collapse", 
          "holes", 
          "stationary state", 
          "Kerr solution", 
          "amount of energy", 
          "relativity", 
          "time increases", 
          "surface", 
          "energy", 
          "spacelike surfaces", 
          "certain limits", 
          "singularity", 
          "state", 
          "limit", 
          "horizon", 
          "collapse", 
          "region", 
          "results", 
          "surface area", 
          "conjecture", 
          "components", 
          "solution", 
          "way", 
          "increase", 
          "amount", 
          "future", 
          "Carter", 
          "area", 
          "Israel"
        ], 
        "name": "Black holes in general relativity", 
        "pagination": "152-166", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042906989"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01877517"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01877517", 
          "https://app.dimensions.ai/details/publication/pub.1042906989"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_150.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01877517"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01877517'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01877517'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01877517'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01877517'


     

    This table displays all metadata directly associated to this object as RDF triples.

    102 TRIPLES      21 PREDICATES      61 URIs      50 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01877517 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author N763fa39b4dfd4c3aa98e1d39dde906a2
    4 schema:citation sg:pub.10.1007/bf01645859
    5 sg:pub.10.1007/bf01647092
    6 sg:pub.10.1007/bf01649448
    7 schema:datePublished 1972-06
    8 schema:datePublishedReg 1972-06-01
    9 schema:description It is assumed that the singularities which occur in gravitational collapse are not visible from outside but are hidden behind an event horizon. This means that one can still predict the future outside the event horizon. A black hole on a spacelike surface is defined to be a connected component of the region of the surface bounded by the event horizon. As time increase, black holes may merge together but can never bifurcate. A black hole would be expected to settle down to a stationary state. It is shown that a stationary black hole must have topologically spherical boundary and must be axisymmetric if it is rotating. These results together with those of Israel and Carter go most of the way towards establishing the conjecture that any stationary black hole is a Kerr solution. Using this conjecture and the result that the surface area of black holes can never decrease, one can place certain limits on the amount of energy that can be extracted from black holes.
    10 schema:genre article
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N8351716885dc4d8596799ed4f4fee2d3
    13 N95b7eb23b55a472f93d19aec41fdd7b6
    14 sg:journal.1136216
    15 schema:keywords Carter
    16 Israel
    17 Kerr solution
    18 amount
    19 amount of energy
    20 area
    21 black holes
    22 certain limits
    23 collapse
    24 components
    25 conjecture
    26 energy
    27 event horizon
    28 future
    29 general relativity
    30 gravitational collapse
    31 holes
    32 horizon
    33 increase
    34 limit
    35 region
    36 relativity
    37 results
    38 singularity
    39 solution
    40 spacelike surfaces
    41 state
    42 stationary black holes
    43 stationary state
    44 surface
    45 surface area
    46 time increases
    47 way
    48 schema:name Black holes in general relativity
    49 schema:pagination 152-166
    50 schema:productId Nbef553f974804abf88501b7c0d4da4a1
    51 Nf7a6cd01ac454ed58207b54993ba7f92
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042906989
    53 https://doi.org/10.1007/bf01877517
    54 schema:sdDatePublished 2022-08-04T16:49
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher N78775749f18e4a99ae31aef31e7bd14a
    57 schema:url https://doi.org/10.1007/bf01877517
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N763fa39b4dfd4c3aa98e1d39dde906a2 rdf:first sg:person.012212614165.22
    62 rdf:rest rdf:nil
    63 N78775749f18e4a99ae31aef31e7bd14a schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 N8351716885dc4d8596799ed4f4fee2d3 schema:volumeNumber 25
    66 rdf:type schema:PublicationVolume
    67 N95b7eb23b55a472f93d19aec41fdd7b6 schema:issueNumber 2
    68 rdf:type schema:PublicationIssue
    69 Nbef553f974804abf88501b7c0d4da4a1 schema:name dimensions_id
    70 schema:value pub.1042906989
    71 rdf:type schema:PropertyValue
    72 Nf7a6cd01ac454ed58207b54993ba7f92 schema:name doi
    73 schema:value 10.1007/bf01877517
    74 rdf:type schema:PropertyValue
    75 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Physical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Astronomical and Space Sciences
    80 rdf:type schema:DefinedTerm
    81 sg:journal.1136216 schema:issn 0010-3616
    82 1432-0916
    83 schema:name Communications in Mathematical Physics
    84 schema:publisher Springer Nature
    85 rdf:type schema:Periodical
    86 sg:person.012212614165.22 schema:affiliation grid-institutes:grid.5335.0
    87 schema:familyName Hawking
    88 schema:givenName S. W.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22
    90 rdf:type schema:Person
    91 sg:pub.10.1007/bf01645859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040532386
    92 https://doi.org/10.1007/bf01645859
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/bf01647092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007546597
    95 https://doi.org/10.1007/bf01647092
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/bf01649448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052904713
    98 https://doi.org/10.1007/bf01649448
    99 rdf:type schema:CreativeWork
    100 grid-institutes:grid.5335.0 schema:alternateName Institute of Theoretical Astronomy, University of Cambridge, Cambridge, England
    101 schema:name Institute of Theoretical Astronomy, University of Cambridge, Cambridge, England
    102 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...