Some effects of prolonged polarization on membrane currents in bullfrog atrial muscle View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1973-12

AUTHORS

David W. Maughan

ABSTRACT

Bullfrog atrial trabecula were voltage-clamped using a double-sucrose-gap method. Step depolarization produced a slowly changing outward current which was studied by analyzing the current “tail” produced by repolarization. The initial phase of the current tail (time constant 0.1 to 0.7 sec at −60 mV) had a reversal potential which depended upon the duration and magnitude of the preceding depolarization. Calculations based on trabecular geometry and the behavior of the currents in high external potassium suggest that part of the current tail reflects a restoration to a lower steadystate concentration of external potassium which had accumulated in narrow clefts between cells during the preceding depolarization. Step hyperpolarization produced a declining inward current (time constant 0.3 sec at −100 mV) which can be explained on the basis of a depletion of potassium from these intercellular clefts (about 0.5% of the trabecular volume). More... »

PAGES

331-352

References to SciGraph publications

  • 1968-06. Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique in PFLÜGERS ARCHIV - EUROPEAN JOURNAL OF PHYSIOLOGY
  • 1970-12. Electrical activity and metabolism in cardiac tissue: An experimental and theoretical study in THE JOURNAL OF MEMBRANE BIOLOGY
  • 1971-12. Properties of the outward currents in frog atrial muscle in PFLÜGERS ARCHIV - EUROPEAN JOURNAL OF PHYSIOLOGY
  • 1971-12. The frequency dependence of outward current in frog auricular fibres in PFLÜGERS ARCHIV - EUROPEAN JOURNAL OF PHYSIOLOGY
  • 1964-03. Ionic currents in cardiac excitation in PFLÜGERS ARCHIV - EUROPEAN JOURNAL OF PHYSIOLOGY
  • 1966-03. Kalium-Fluxe und Membranpotential am Froschvorhof in Abhängigkeit von der Kalium-Außenkonzentration in PFLÜGERS ARCHIV - EUROPEAN JOURNAL OF PHYSIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01869829

    DOI

    http://dx.doi.org/10.1007/bf01869829

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031273296

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/4544319


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1116", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Physiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anura", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Transport", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electric Conductivity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electric Stimulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kinetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membrane Potentials", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Muscles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Potassium", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rana catesbeiana", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physiology and Biophysics, University of Washington School of Medicine, 98195, Seattle, Washington", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Physiology and Biophysics, University of Washington School of Medicine, 98195, Seattle, Washington"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maughan", 
            "givenName": "David W.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00588004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050895984", 
              "https://doi.org/10.1007/bf00588004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00412534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012348803", 
              "https://doi.org/10.1007/bf00412534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01868015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010604945", 
              "https://doi.org/10.1007/bf01868015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00588003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036532221", 
              "https://doi.org/10.1007/bf00588003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00362729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009268455", 
              "https://doi.org/10.1007/bf00362729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00412616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025915588", 
              "https://doi.org/10.1007/bf00412616"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1973-12", 
        "datePublishedReg": "1973-12-01", 
        "description": "Bullfrog atrial trabecula were voltage-clamped using a double-sucrose-gap method. Step depolarization produced a slowly changing outward current which was studied by analyzing the current \u201ctail\u201d produced by repolarization. The initial phase of the current tail (time constant 0.1 to 0.7 sec at \u221260 mV) had a reversal potential which depended upon the duration and magnitude of the preceding depolarization. Calculations based on trabecular geometry and the behavior of the currents in high external potassium suggest that part of the current tail reflects a restoration to a lower steadystate concentration of external potassium which had accumulated in narrow clefts between cells during the preceding depolarization. Step hyperpolarization produced a declining inward current (time constant 0.3 sec at \u2212100 mV) which can be explained on the basis of a depletion of potassium from these intercellular clefts (about 0.5% of the trabecular volume).", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01869829", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1012006", 
            "issn": [
              "0022-2631", 
              "1432-1424"
            ], 
            "name": "The Journal of Membrane Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "external potassium", 
          "bullfrog atrial muscle", 
          "high external potassium", 
          "atrial muscle", 
          "atrial trabeculae", 
          "reversal potential", 
          "step depolarizations", 
          "membrane currents", 
          "depletion of potassium", 
          "step hyperpolarization", 
          "depolarization", 
          "current tail", 
          "steadystate concentrations", 
          "intercellular clefts", 
          "cleft", 
          "bullfrog atrial trabeculae", 
          "repolarization", 
          "initial phase", 
          "muscle", 
          "hyperpolarization", 
          "potassium", 
          "trabeculae", 
          "narrow cleft", 
          "duration", 
          "gap method", 
          "cells", 
          "depletion", 
          "restoration", 
          "effect", 
          "concentration", 
          "tail", 
          "trabecular geometry", 
          "potential", 
          "prolonged polarization", 
          "part", 
          "basis", 
          "method", 
          "magnitude", 
          "phase", 
          "current", 
          "behavior", 
          "polarization", 
          "calculations", 
          "geometry"
        ], 
        "name": "Some effects of prolonged polarization on membrane currents in bullfrog atrial muscle", 
        "pagination": "331-352", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031273296"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01869829"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "4544319"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01869829", 
          "https://app.dimensions.ai/details/publication/pub.1031273296"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T21:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_110.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01869829"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01869829'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01869829'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01869829'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01869829'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      21 PREDICATES      88 URIs      74 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01869829 schema:about N076fdf16310b4bcfa9d1d13fedc8fefa
    2 N21014746346a4a2e8aa8f44251f64e69
    3 N346c02253b444fd6a71f53e1b274da38
    4 N3edd6a360e25467ca14cd62efa37e944
    5 N488356f2181f4810911292fb66a68fbb
    6 N646e846efba644ef852438005d896547
    7 N6cd07b9c34464367b65e6c5d63e70155
    8 N7b93d0440e194a2db8ff8ad7d2290f3d
    9 N83926a99b2d84855b80fe24a2f5010f4
    10 Nb4ff0ed301dc4df3b20e0426a41a37e6
    11 Nb7917275b59643ebb73b0ab254b30352
    12 Nc46bb70e0817463eb0c0a6487de75b60
    13 anzsrc-for:11
    14 anzsrc-for:1116
    15 schema:author N6215a33b76e44e629e9bbffe896c4823
    16 schema:citation sg:pub.10.1007/bf00362729
    17 sg:pub.10.1007/bf00412534
    18 sg:pub.10.1007/bf00412616
    19 sg:pub.10.1007/bf00588003
    20 sg:pub.10.1007/bf00588004
    21 sg:pub.10.1007/bf01868015
    22 schema:datePublished 1973-12
    23 schema:datePublishedReg 1973-12-01
    24 schema:description Bullfrog atrial trabecula were voltage-clamped using a double-sucrose-gap method. Step depolarization produced a slowly changing outward current which was studied by analyzing the current “tail” produced by repolarization. The initial phase of the current tail (time constant 0.1 to 0.7 sec at −60 mV) had a reversal potential which depended upon the duration and magnitude of the preceding depolarization. Calculations based on trabecular geometry and the behavior of the currents in high external potassium suggest that part of the current tail reflects a restoration to a lower steadystate concentration of external potassium which had accumulated in narrow clefts between cells during the preceding depolarization. Step hyperpolarization produced a declining inward current (time constant 0.3 sec at −100 mV) which can be explained on the basis of a depletion of potassium from these intercellular clefts (about 0.5% of the trabecular volume).
    25 schema:genre article
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N5abcd8f12c2c4c35af7320e6c5f99149
    28 Nb015a06cf44f4ec489dae62f3518b836
    29 sg:journal.1012006
    30 schema:keywords atrial muscle
    31 atrial trabeculae
    32 basis
    33 behavior
    34 bullfrog atrial muscle
    35 bullfrog atrial trabeculae
    36 calculations
    37 cells
    38 cleft
    39 concentration
    40 current
    41 current tail
    42 depletion
    43 depletion of potassium
    44 depolarization
    45 duration
    46 effect
    47 external potassium
    48 gap method
    49 geometry
    50 high external potassium
    51 hyperpolarization
    52 initial phase
    53 intercellular clefts
    54 magnitude
    55 membrane currents
    56 method
    57 muscle
    58 narrow cleft
    59 part
    60 phase
    61 polarization
    62 potassium
    63 potential
    64 prolonged polarization
    65 repolarization
    66 restoration
    67 reversal potential
    68 steadystate concentrations
    69 step depolarizations
    70 step hyperpolarization
    71 tail
    72 trabeculae
    73 trabecular geometry
    74 schema:name Some effects of prolonged polarization on membrane currents in bullfrog atrial muscle
    75 schema:pagination 331-352
    76 schema:productId N08a288e04f63480b9b29629673a59654
    77 N7fa0604e7fb5481b8a80e874691b6dd9
    78 Nf19a83e4dad042328c18886e7cf8feeb
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031273296
    80 https://doi.org/10.1007/bf01869829
    81 schema:sdDatePublished 2022-06-01T21:56
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher N9968b8ff3e5b4ae1b08071690e783e7a
    84 schema:url https://doi.org/10.1007/bf01869829
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N076fdf16310b4bcfa9d1d13fedc8fefa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Anura
    90 rdf:type schema:DefinedTerm
    91 N08a288e04f63480b9b29629673a59654 schema:name dimensions_id
    92 schema:value pub.1031273296
    93 rdf:type schema:PropertyValue
    94 N21014746346a4a2e8aa8f44251f64e69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Membrane Potentials
    96 rdf:type schema:DefinedTerm
    97 N346c02253b444fd6a71f53e1b274da38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Kinetics
    99 rdf:type schema:DefinedTerm
    100 N3edd6a360e25467ca14cd62efa37e944 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Electric Stimulation
    102 rdf:type schema:DefinedTerm
    103 N488356f2181f4810911292fb66a68fbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Time Factors
    105 rdf:type schema:DefinedTerm
    106 N5abcd8f12c2c4c35af7320e6c5f99149 schema:volumeNumber 11
    107 rdf:type schema:PublicationVolume
    108 N6215a33b76e44e629e9bbffe896c4823 rdf:first N8c3d2f80884345dda91811af9bdcddc9
    109 rdf:rest rdf:nil
    110 N646e846efba644ef852438005d896547 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Biological Transport
    112 rdf:type schema:DefinedTerm
    113 N6cd07b9c34464367b65e6c5d63e70155 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Potassium
    115 rdf:type schema:DefinedTerm
    116 N7b93d0440e194a2db8ff8ad7d2290f3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Animals
    118 rdf:type schema:DefinedTerm
    119 N7fa0604e7fb5481b8a80e874691b6dd9 schema:name doi
    120 schema:value 10.1007/bf01869829
    121 rdf:type schema:PropertyValue
    122 N83926a99b2d84855b80fe24a2f5010f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Muscles
    124 rdf:type schema:DefinedTerm
    125 N8c3d2f80884345dda91811af9bdcddc9 schema:affiliation grid-institutes:grid.34477.33
    126 schema:familyName Maughan
    127 schema:givenName David W.
    128 rdf:type schema:Person
    129 N9968b8ff3e5b4ae1b08071690e783e7a schema:name Springer Nature - SN SciGraph project
    130 rdf:type schema:Organization
    131 Nb015a06cf44f4ec489dae62f3518b836 schema:issueNumber 1
    132 rdf:type schema:PublicationIssue
    133 Nb4ff0ed301dc4df3b20e0426a41a37e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Models, Biological
    135 rdf:type schema:DefinedTerm
    136 Nb7917275b59643ebb73b0ab254b30352 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Rana catesbeiana
    138 rdf:type schema:DefinedTerm
    139 Nc46bb70e0817463eb0c0a6487de75b60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Electric Conductivity
    141 rdf:type schema:DefinedTerm
    142 Nf19a83e4dad042328c18886e7cf8feeb schema:name pubmed_id
    143 schema:value 4544319
    144 rdf:type schema:PropertyValue
    145 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Medical and Health Sciences
    147 rdf:type schema:DefinedTerm
    148 anzsrc-for:1116 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Medical Physiology
    150 rdf:type schema:DefinedTerm
    151 sg:journal.1012006 schema:issn 0022-2631
    152 1432-1424
    153 schema:name The Journal of Membrane Biology
    154 schema:publisher Springer Nature
    155 rdf:type schema:Periodical
    156 sg:pub.10.1007/bf00362729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009268455
    157 https://doi.org/10.1007/bf00362729
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf00412534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012348803
    160 https://doi.org/10.1007/bf00412534
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf00412616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025915588
    163 https://doi.org/10.1007/bf00412616
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/bf00588003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036532221
    166 https://doi.org/10.1007/bf00588003
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/bf00588004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050895984
    169 https://doi.org/10.1007/bf00588004
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/bf01868015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010604945
    172 https://doi.org/10.1007/bf01868015
    173 rdf:type schema:CreativeWork
    174 grid-institutes:grid.34477.33 schema:alternateName Department of Physiology and Biophysics, University of Washington School of Medicine, 98195, Seattle, Washington
    175 schema:name Department of Physiology and Biophysics, University of Washington School of Medicine, 98195, Seattle, Washington
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...