Induction of intracellular ATP synthesis by extracellular ferricyanide in human red blood cells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1969-12

AUTHORS

R. K. Mishra, H. Passow

ABSTRACT

Human red blood cells rapidly convert extracellular ferricyanide into extracellular ferrocyanide. The reaction is enhanced by the addition of a substrate, adenosine. This increase of the rate of reaction is abolished by iodoacetate. The results indicate there is a flow of electrons across the membrane of metabolizing red blood cells. The reduction of extracellular ferricyanide is accompanied by the formation of intracellular ATP. The effect of an uncoupler and of inhibitors of oxidative phosphorylation on this reaction was studied under conditions where the natural rate of ATP synthesis was slightly reduced by 10−4 moles/liter iodoacetate. ATP formation was found to be inhibited by DNP, cyanide, and, to a lesser extent, by azide. Amytal is ineffective. Ferrocyanide enhances ATP breakdown. The action of DNP requires the presence of the cell membrane. It can probably not be related to a stimulation of the membrane ATPase of Laris and Letchworth, nor can it be explained on the basis of Mitchell's chemiosmotic hypothesis by effects on the passive permeability of the erythrocyte membrane to H+ or alkali ions. In contrast to methylene blue and other oxidants, ferricyanide does not stimulate oxygen consumption in adult red blood cells. More... »

PAGES

214-224

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01869782

DOI

http://dx.doi.org/10.1007/bf01869782

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050168817

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24174050


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "II. Physiologisches Institut, Universit\u00e4t des Saarlandes, 665, Homburg (Saar), Germany", 
          "id": "http://www.grid.ac/institutes/grid.11749.3a", 
          "name": [
            "II. Physiologisches Institut, Universit\u00e4t des Saarlandes, 665, Homburg (Saar), Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mishra", 
        "givenName": "R. K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "II. Physiologisches Institut, Universit\u00e4t des Saarlandes, 665, Homburg (Saar), Germany", 
          "id": "http://www.grid.ac/institutes/grid.11749.3a", 
          "name": [
            "II. Physiologisches Institut, Universit\u00e4t des Saarlandes, 665, Homburg (Saar), Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Passow", 
        "givenName": "H.", 
        "id": "sg:person.01105240642.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105240642.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00672481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009279768", 
          "https://doi.org/10.1007/bf00672481"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1969-12", 
    "datePublishedReg": "1969-12-01", 
    "description": "Human red blood cells rapidly convert extracellular ferricyanide into extracellular ferrocyanide. The reaction is enhanced by the addition of a substrate, adenosine. This increase of the rate of reaction is abolished by iodoacetate. The results indicate there is a flow of electrons across the membrane of metabolizing red blood cells. The reduction of extracellular ferricyanide is accompanied by the formation of intracellular ATP. The effect of an uncoupler and of inhibitors of oxidative phosphorylation on this reaction was studied under conditions where the natural rate of ATP synthesis was slightly reduced by 10\u22124 moles/liter iodoacetate. ATP formation was found to be inhibited by DNP, cyanide, and, to a lesser extent, by azide. Amytal is ineffective. Ferrocyanide enhances ATP breakdown. The action of DNP requires the presence of the cell membrane. It can probably not be related to a stimulation of the membrane ATPase of Laris and Letchworth, nor can it be explained on the basis of Mitchell's chemiosmotic hypothesis by effects on the passive permeability of the erythrocyte membrane to H+ or alkali ions. In contrast to methylene blue and other oxidants, ferricyanide does not stimulate oxygen consumption in adult red blood cells.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01869782", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1012006", 
        "issn": [
          "0022-2631", 
          "1432-1424"
        ], 
        "name": "The Journal of Membrane Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "keywords": [
      "red blood cells", 
      "blood cells", 
      "human red blood cells", 
      "action of DNP", 
      "adult red blood cells", 
      "ATP breakdown", 
      "extracellular ferricyanide", 
      "intracellular ATP", 
      "oxygen consumption", 
      "intracellular ATP synthesis", 
      "cells", 
      "passive permeability", 
      "erythrocyte membranes", 
      "oxidative phosphorylation", 
      "lesser extent", 
      "cell membrane", 
      "ATP synthesis", 
      "stimulation", 
      "DNP", 
      "amytal", 
      "inhibitors", 
      "iodoacetate", 
      "adenosine", 
      "induction", 
      "rate", 
      "effect", 
      "membrane", 
      "phosphorylation", 
      "ATP formation", 
      "lari", 
      "ATP", 
      "ATPase", 
      "action", 
      "increase", 
      "reduction", 
      "contrast", 
      "presence", 
      "hypothesis", 
      "reaction", 
      "uncoupler", 
      "extent", 
      "addition", 
      "permeability", 
      "consumption", 
      "formation", 
      "synthesis", 
      "breakdown", 
      "membrane ATPase", 
      "results", 
      "basis", 
      "conditions", 
      "cyanide", 
      "chemiosmotic hypothesis", 
      "rate of reaction", 
      "oxidants", 
      "flow", 
      "flow of electrons", 
      "azide", 
      "Mitchell's chemiosmotic hypothesis", 
      "ferricyanide", 
      "alkali ions", 
      "ferrocyanide", 
      "substrate", 
      "natural rate", 
      "ions", 
      "electrons", 
      "Letchworth", 
      "extracellular ferrocyanide"
    ], 
    "name": "Induction of intracellular ATP synthesis by extracellular ferricyanide in human red blood cells", 
    "pagination": "214-224", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050168817"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01869782"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24174050"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01869782", 
      "https://app.dimensions.ai/details/publication/pub.1050168817"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_97.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01869782"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01869782'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01869782'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01869782'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01869782'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      22 PREDICATES      96 URIs      87 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01869782 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nae90d62b41be48e18c541ed5495f8a3d
4 schema:citation sg:pub.10.1007/bf00672481
5 schema:datePublished 1969-12
6 schema:datePublishedReg 1969-12-01
7 schema:description Human red blood cells rapidly convert extracellular ferricyanide into extracellular ferrocyanide. The reaction is enhanced by the addition of a substrate, adenosine. This increase of the rate of reaction is abolished by iodoacetate. The results indicate there is a flow of electrons across the membrane of metabolizing red blood cells. The reduction of extracellular ferricyanide is accompanied by the formation of intracellular ATP. The effect of an uncoupler and of inhibitors of oxidative phosphorylation on this reaction was studied under conditions where the natural rate of ATP synthesis was slightly reduced by 10−4 moles/liter iodoacetate. ATP formation was found to be inhibited by DNP, cyanide, and, to a lesser extent, by azide. Amytal is ineffective. Ferrocyanide enhances ATP breakdown. The action of DNP requires the presence of the cell membrane. It can probably not be related to a stimulation of the membrane ATPase of Laris and Letchworth, nor can it be explained on the basis of Mitchell's chemiosmotic hypothesis by effects on the passive permeability of the erythrocyte membrane to H+ or alkali ions. In contrast to methylene blue and other oxidants, ferricyanide does not stimulate oxygen consumption in adult red blood cells.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1ae12a56a75f4854a520b7498d0a1aca
12 N842e9b23b3e649e0996efc5345d00449
13 sg:journal.1012006
14 schema:keywords ATP
15 ATP breakdown
16 ATP formation
17 ATP synthesis
18 ATPase
19 DNP
20 Letchworth
21 Mitchell's chemiosmotic hypothesis
22 action
23 action of DNP
24 addition
25 adenosine
26 adult red blood cells
27 alkali ions
28 amytal
29 azide
30 basis
31 blood cells
32 breakdown
33 cell membrane
34 cells
35 chemiosmotic hypothesis
36 conditions
37 consumption
38 contrast
39 cyanide
40 effect
41 electrons
42 erythrocyte membranes
43 extent
44 extracellular ferricyanide
45 extracellular ferrocyanide
46 ferricyanide
47 ferrocyanide
48 flow
49 flow of electrons
50 formation
51 human red blood cells
52 hypothesis
53 increase
54 induction
55 inhibitors
56 intracellular ATP
57 intracellular ATP synthesis
58 iodoacetate
59 ions
60 lari
61 lesser extent
62 membrane
63 membrane ATPase
64 natural rate
65 oxidants
66 oxidative phosphorylation
67 oxygen consumption
68 passive permeability
69 permeability
70 phosphorylation
71 presence
72 rate
73 rate of reaction
74 reaction
75 red blood cells
76 reduction
77 results
78 stimulation
79 substrate
80 synthesis
81 uncoupler
82 schema:name Induction of intracellular ATP synthesis by extracellular ferricyanide in human red blood cells
83 schema:pagination 214-224
84 schema:productId N15a0dd4c8be747e28ce8fbf49d43c271
85 N2bf826a09ac54a49b088df0950d56253
86 Nba746526964148f4ba207604a0b9c960
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050168817
88 https://doi.org/10.1007/bf01869782
89 schema:sdDatePublished 2022-01-01T19:04
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N273fc5f17aed4056960cacd831bbce64
92 schema:url https://doi.org/10.1007/bf01869782
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N15a0dd4c8be747e28ce8fbf49d43c271 schema:name doi
97 schema:value 10.1007/bf01869782
98 rdf:type schema:PropertyValue
99 N1ae12a56a75f4854a520b7498d0a1aca schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N273fc5f17aed4056960cacd831bbce64 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N2bf826a09ac54a49b088df0950d56253 schema:name dimensions_id
104 schema:value pub.1050168817
105 rdf:type schema:PropertyValue
106 N587cbb089abb40269505eb2120daf12f rdf:first sg:person.01105240642.61
107 rdf:rest rdf:nil
108 N842e9b23b3e649e0996efc5345d00449 schema:volumeNumber 1
109 rdf:type schema:PublicationVolume
110 Nae90d62b41be48e18c541ed5495f8a3d rdf:first Nfdcb0a091927427cb04d701d2c39169c
111 rdf:rest N587cbb089abb40269505eb2120daf12f
112 Nba746526964148f4ba207604a0b9c960 schema:name pubmed_id
113 schema:value 24174050
114 rdf:type schema:PropertyValue
115 Nfdcb0a091927427cb04d701d2c39169c schema:affiliation grid-institutes:grid.11749.3a
116 schema:familyName Mishra
117 schema:givenName R. K.
118 rdf:type schema:Person
119 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
120 schema:name Biological Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
123 schema:name Biochemistry and Cell Biology
124 rdf:type schema:DefinedTerm
125 sg:journal.1012006 schema:issn 0022-2631
126 1432-1424
127 schema:name The Journal of Membrane Biology
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.01105240642.61 schema:affiliation grid-institutes:grid.11749.3a
131 schema:familyName Passow
132 schema:givenName H.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105240642.61
134 rdf:type schema:Person
135 sg:pub.10.1007/bf00672481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009279768
136 https://doi.org/10.1007/bf00672481
137 rdf:type schema:CreativeWork
138 grid-institutes:grid.11749.3a schema:alternateName II. Physiologisches Institut, Universität des Saarlandes, 665, Homburg (Saar), Germany
139 schema:name II. Physiologisches Institut, Universität des Saarlandes, 665, Homburg (Saar), Germany
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...