Charge clusters and the orientation of membrane proteins View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1982-12

AUTHORS

J. N. Weinstein, R. Blumenthal, J. van Renswoude, C. Kempf, R. D. Klausner

ABSTRACT

Although hydrophobic forces probably dominate in determining whether or not a protein will insert into a membrane, recent studies in our laboratory suggest that electrostatic forces may influence the final orientation of the inserted protein. A negatively charged hepatic receptor protein was found to respond totrans-positive membrane potentials as though “electrophoresing” into the bilayer. In the presence of ligand, the protein appeared to cross the membrane and expose binding sites on the opposite side. Similarly, a positively charged portion of the peptide melittin crosses a lipid membrane reversibly in response to atrans-negative potential. These findings, and others by Date and co-workers, have led us to postulate that transmembrane proteins would have hydrophobic transmembrane segments bracketed by positively charged residues on the cytoplasmic side and negatively charged residues on the extra-cytoplasmic side. In the thermodynamic sense, these asymmetrically placed charge clusters would create a compelling preference for correct orientation of the protein, given the inside-negative potential of most or all cells. This prediction is borne out by examination of the few transmembrane proteins (glycophorin, M13 coat protein, H-2Kb, HLA-A2, HLA-B7, and mouse Ig μ heavy chain) for which we have sufficient information on both sequence and orientation. In addition to the usual diffusion and pump potentials measurable with electrodes, the “microscopic” membrane potential reflects surface charge effects. Asymmetries in surface charge arising from either ionic or lipid asymmetries would be expected to enhance the bias for correct protein orientation, at least with respect to plasma membranes. We introduce a generalized form of Stern equation to assess surface charge and binding effects quantitatively. In the kinetic sense, dipole potentials within the membrane would tend to prevent positively charged residues from crossing the membrane to leave the cytoplasm. These considerations are consistent with the observed protein orientations. Finally, the electrostatic and hydrophobic factors noted here are combined in two hypothetical models of translocation, the first involving initial interaction of the presumptive transmembrane segment with the membrane; the second assuming initial interaction of a leader sequence. More... »

PAGES

203-212

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01868495

DOI

http://dx.doi.org/10.1007/bf01868495

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037746913

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/6808138


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Membrane", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytoplasm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrophysiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycophorin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HLA Antigens", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunoglobulin mu-Chains", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Melitten", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institutes of Health", 
          "id": "https://www.grid.ac/institutes/grid.94365.3d", 
          "name": [
            "Section of Membrane Structure and Function, Laboratory of Theoretical Biology, National Cancer Institute, National Institutes of Health, 20205, Bethesda, Maryland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weinstein", 
        "givenName": "J. N.", 
        "id": "sg:person.0662263014.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662263014.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health", 
          "id": "https://www.grid.ac/institutes/grid.94365.3d", 
          "name": [
            "Section of Membrane Structure and Function, Laboratory of Theoretical Biology, National Cancer Institute, National Institutes of Health, 20205, Bethesda, Maryland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blumenthal", 
        "givenName": "R.", 
        "id": "sg:person.0622515432.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622515432.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health", 
          "id": "https://www.grid.ac/institutes/grid.94365.3d", 
          "name": [
            "Section of Membrane Structure and Function, Laboratory of Theoretical Biology, National Cancer Institute, National Institutes of Health, 20205, Bethesda, Maryland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Renswoude", 
        "givenName": "J.", 
        "id": "sg:person.01153515117.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153515117.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health", 
          "id": "https://www.grid.ac/institutes/grid.94365.3d", 
          "name": [
            "Section of Membrane Structure and Function, Laboratory of Theoretical Biology, National Cancer Institute, National Institutes of Health, 20205, Bethesda, Maryland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kempf", 
        "givenName": "C.", 
        "id": "sg:person.01201077602.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201077602.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health", 
          "id": "https://www.grid.ac/institutes/grid.94365.3d", 
          "name": [
            "Section of Membrane Structure and Function, Laboratory of Theoretical Biology, National Cancer Institute, National Institutes of Health, 20205, Bethesda, Maryland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klausner", 
        "givenName": "R. D.", 
        "id": "sg:person.01314201725.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314201725.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev.bi.45.070176.003315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000004009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(77)90126-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001831643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(77)90126-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001831643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/291035a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007337931", 
          "https://doi.org/10.1038/291035a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0979-6_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010694197", 
          "https://doi.org/10.1007/978-1-4684-0979-6_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-7467-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010783510", 
          "https://doi.org/10.1007/978-1-4615-7467-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-7467-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010783510", 
          "https://doi.org/10.1007/978-1-4615-7467-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj1890475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011374325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj1890475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011374325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.77.9.5087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011408732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(81)90136-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012566284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.73.8.2852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013253020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.bi.48.070179.000403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013384576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1979.tb13100.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014593600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(78)90203-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017673801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(78)90203-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017673801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(80)90616-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018339537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(74)90410-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018869818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.72.3.568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020208793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/10409238009105465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020977178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470122860.ch3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021005146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1085/jgp.74.4.457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021547860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0070-2161(08)60677-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022179986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(73)90211-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026280011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(73)90211-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026280011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.67.3.835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026918290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1085/jgp.77.4.445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028249398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.67.3.852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029540846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/288333a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029797848", 
          "https://doi.org/10.1038/288333a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.77.2.827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031880705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.72.7.2789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032931326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.77.4.2023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034107528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/276159a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036789968", 
          "https://doi.org/10.1038/276159a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1979.tb12999.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037211391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1952.sp004764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038260469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(74)85907-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038402143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1978.tb41942.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044651119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.74.8.3350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045300861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(77)90019-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045641417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(77)90019-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045641417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1979.tb12876.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046150764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1980.tb47238.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046318172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.bb.08.060179.000403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046752540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(69)86396-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048408439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.77.8.4669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049826685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01869662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052004497", 
          "https://doi.org/10.1007/bf01869662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01869662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052004497", 
          "https://doi.org/10.1007/bf01869662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4157(75)90006-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053108029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4157(75)90006-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053108029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr60130a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053770011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500000123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054816763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500000123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054816763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00590a028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055181901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.402030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062623769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.69317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062641897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7001628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062643226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.948756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062662108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076754571", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081912611", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082129663", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082306475", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1982-12", 
    "datePublishedReg": "1982-12-01", 
    "description": "Although hydrophobic forces probably dominate in determining whether or not a protein will insert into a membrane, recent studies in our laboratory suggest that electrostatic forces may influence the final orientation of the inserted protein. A negatively charged hepatic receptor protein was found to respond totrans-positive membrane potentials as though \u201celectrophoresing\u201d into the bilayer. In the presence of ligand, the protein appeared to cross the membrane and expose binding sites on the opposite side. Similarly, a positively charged portion of the peptide melittin crosses a lipid membrane reversibly in response to atrans-negative potential. These findings, and others by Date and co-workers, have led us to postulate that transmembrane proteins would have hydrophobic transmembrane segments bracketed by positively charged residues on the cytoplasmic side and negatively charged residues on the extra-cytoplasmic side. In the thermodynamic sense, these asymmetrically placed charge clusters would create a compelling preference for correct orientation of the protein, given the inside-negative potential of most or all cells. This prediction is borne out by examination of the few transmembrane proteins (glycophorin, M13 coat protein, H-2Kb, HLA-A2, HLA-B7, and mouse Ig \u03bc heavy chain) for which we have sufficient information on both sequence and orientation. In addition to the usual diffusion and pump potentials measurable with electrodes, the \u201cmicroscopic\u201d membrane potential reflects surface charge effects. Asymmetries in surface charge arising from either ionic or lipid asymmetries would be expected to enhance the bias for correct protein orientation, at least with respect to plasma membranes. We introduce a generalized form of Stern equation to assess surface charge and binding effects quantitatively. In the kinetic sense, dipole potentials within the membrane would tend to prevent positively charged residues from crossing the membrane to leave the cytoplasm. These considerations are consistent with the observed protein orientations. Finally, the electrostatic and hydrophobic factors noted here are combined in two hypothetical models of translocation, the first involving initial interaction of the presumptive transmembrane segment with the membrane; the second assuming initial interaction of a leader sequence.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01868495", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1012006", 
        "issn": [
          "0022-2631", 
          "1432-1424"
        ], 
        "name": "The Journal of Membrane Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "66"
      }
    ], 
    "name": "Charge clusters and the orientation of membrane proteins", 
    "pagination": "203-212", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b3d03743e6122027c40948d9866599f10419fd1951d62e646e5b15a1d8fc1e01"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "6808138"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0211301"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01868495"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037746913"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01868495", 
      "https://app.dimensions.ai/details/publication/pub.1037746913"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77574_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF01868495"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01868495'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01868495'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01868495'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01868495'


 

This table displays all metadata directly associated to this object as RDF triples.

299 TRIPLES      21 PREDICATES      92 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01868495 schema:about N42b7592a2831450b97eb50691c79f975
2 N6b724cfdf09a4b53b2242e7b8b3ff315
3 N6b82230168414ffc81e9ce4a09e5fd69
4 N731978cf1f8249e98a8cd617b1f2d21c
5 N7b6fc7d581704846b28ac92dc2d5533c
6 Naba1577be04c40b6976b34ae94b7d133
7 Nad9f0c5242344323bfc94aada4637ebe
8 Nc8e552c21388453c8ef83ad50256ebd7
9 Nc9b96799432542d58284595206fdfa1f
10 Ncdf7429fa363481f8125f9463f27e80b
11 Nfecef30aabec43abb97e0459cb519f29
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author Nc8aeb613cfef449e9ef9166a99a43c89
15 schema:citation sg:pub.10.1007/978-1-4615-7467-5
16 sg:pub.10.1007/978-1-4684-0979-6_6
17 sg:pub.10.1007/bf01869662
18 sg:pub.10.1038/276159a0
19 sg:pub.10.1038/288333a0
20 sg:pub.10.1038/291035a0
21 https://app.dimensions.ai/details/publication/pub.1076754571
22 https://app.dimensions.ai/details/publication/pub.1081912611
23 https://app.dimensions.ai/details/publication/pub.1082129663
24 https://app.dimensions.ai/details/publication/pub.1082306475
25 https://doi.org/10.1002/9780470122860.ch3
26 https://doi.org/10.1016/0005-2736(73)90211-3
27 https://doi.org/10.1016/0005-2736(77)90019-0
28 https://doi.org/10.1016/0005-2736(77)90126-2
29 https://doi.org/10.1016/0005-2736(78)90203-1
30 https://doi.org/10.1016/0022-2836(74)90410-0
31 https://doi.org/10.1016/0092-8674(80)90616-9
32 https://doi.org/10.1016/0092-8674(81)90136-7
33 https://doi.org/10.1016/0304-4157(75)90006-4
34 https://doi.org/10.1016/s0006-3495(69)86396-4
35 https://doi.org/10.1016/s0006-3495(74)85907-2
36 https://doi.org/10.1016/s0070-2161(08)60677-2
37 https://doi.org/10.1017/s0033583500000123
38 https://doi.org/10.1021/bi00590a028
39 https://doi.org/10.1021/cr60130a002
40 https://doi.org/10.1042/bj1890475
41 https://doi.org/10.1073/pnas.72.7.2789
42 https://doi.org/10.1073/pnas.73.8.2852
43 https://doi.org/10.1073/pnas.74.8.3350
44 https://doi.org/10.1073/pnas.77.2.827
45 https://doi.org/10.1073/pnas.77.4.2023
46 https://doi.org/10.1073/pnas.77.8.4669
47 https://doi.org/10.1073/pnas.77.9.5087
48 https://doi.org/10.1083/jcb.67.3.835
49 https://doi.org/10.1083/jcb.67.3.852
50 https://doi.org/10.1083/jcb.72.3.568
51 https://doi.org/10.1085/jgp.74.4.457
52 https://doi.org/10.1085/jgp.77.4.445
53 https://doi.org/10.1111/j.1432-1033.1979.tb12876.x
54 https://doi.org/10.1111/j.1432-1033.1979.tb12999.x
55 https://doi.org/10.1111/j.1432-1033.1979.tb13100.x
56 https://doi.org/10.1111/j.1749-6632.1978.tb41942.x
57 https://doi.org/10.1111/j.1749-6632.1980.tb47238.x
58 https://doi.org/10.1113/jphysiol.1952.sp004764
59 https://doi.org/10.1126/science.402030
60 https://doi.org/10.1126/science.69317
61 https://doi.org/10.1126/science.7001628
62 https://doi.org/10.1126/science.948756
63 https://doi.org/10.1146/annurev.bb.08.060179.000403
64 https://doi.org/10.1146/annurev.bi.45.070176.003315
65 https://doi.org/10.1146/annurev.bi.48.070179.000403
66 https://doi.org/10.3109/10409238009105465
67 schema:datePublished 1982-12
68 schema:datePublishedReg 1982-12-01
69 schema:description Although hydrophobic forces probably dominate in determining whether or not a protein will insert into a membrane, recent studies in our laboratory suggest that electrostatic forces may influence the final orientation of the inserted protein. A negatively charged hepatic receptor protein was found to respond totrans-positive membrane potentials as though “electrophoresing” into the bilayer. In the presence of ligand, the protein appeared to cross the membrane and expose binding sites on the opposite side. Similarly, a positively charged portion of the peptide melittin crosses a lipid membrane reversibly in response to atrans-negative potential. These findings, and others by Date and co-workers, have led us to postulate that transmembrane proteins would have hydrophobic transmembrane segments bracketed by positively charged residues on the cytoplasmic side and negatively charged residues on the extra-cytoplasmic side. In the thermodynamic sense, these asymmetrically placed charge clusters would create a compelling preference for correct orientation of the protein, given the inside-negative potential of most or all cells. This prediction is borne out by examination of the few transmembrane proteins (glycophorin, M13 coat protein, H-2Kb, HLA-A2, HLA-B7, and mouse Ig μ heavy chain) for which we have sufficient information on both sequence and orientation. In addition to the usual diffusion and pump potentials measurable with electrodes, the “microscopic” membrane potential reflects surface charge effects. Asymmetries in surface charge arising from either ionic or lipid asymmetries would be expected to enhance the bias for correct protein orientation, at least with respect to plasma membranes. We introduce a generalized form of Stern equation to assess surface charge and binding effects quantitatively. In the kinetic sense, dipole potentials within the membrane would tend to prevent positively charged residues from crossing the membrane to leave the cytoplasm. These considerations are consistent with the observed protein orientations. Finally, the electrostatic and hydrophobic factors noted here are combined in two hypothetical models of translocation, the first involving initial interaction of the presumptive transmembrane segment with the membrane; the second assuming initial interaction of a leader sequence.
70 schema:genre research_article
71 schema:inLanguage en
72 schema:isAccessibleForFree false
73 schema:isPartOf N4797b446b28640538db9af7e3036f005
74 N65e368e49307484287f4309675322ab7
75 sg:journal.1012006
76 schema:name Charge clusters and the orientation of membrane proteins
77 schema:pagination 203-212
78 schema:productId N0ec46f39673d42ab8bce18317244a7b4
79 N88e54b95a0044c498adffd66ec72c667
80 N8fdf992628ed439798f122d4c12740f3
81 Nb783ec5793bb468184efd1f37b009551
82 Nb958837488d540718fd304f5425333dc
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037746913
84 https://doi.org/10.1007/bf01868495
85 schema:sdDatePublished 2019-04-11T10:50
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N26c8b4e08b5c4f27adcee08b20fff002
88 schema:url http://link.springer.com/10.1007%2FBF01868495
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N0ec46f39673d42ab8bce18317244a7b4 schema:name dimensions_id
93 schema:value pub.1037746913
94 rdf:type schema:PropertyValue
95 N26c8b4e08b5c4f27adcee08b20fff002 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N42b7592a2831450b97eb50691c79f975 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Membrane Potentials
99 rdf:type schema:DefinedTerm
100 N4797b446b28640538db9af7e3036f005 schema:issueNumber 1
101 rdf:type schema:PublicationIssue
102 N65e368e49307484287f4309675322ab7 schema:volumeNumber 66
103 rdf:type schema:PublicationVolume
104 N6b724cfdf09a4b53b2242e7b8b3ff315 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Immunoglobulin mu-Chains
106 rdf:type schema:DefinedTerm
107 N6b82230168414ffc81e9ce4a09e5fd69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Models, Biological
109 rdf:type schema:DefinedTerm
110 N6ed58872bb6f49cd8e36bc74752ec758 rdf:first sg:person.01314201725.86
111 rdf:rest rdf:nil
112 N731978cf1f8249e98a8cd617b1f2d21c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Cell Membrane
114 rdf:type schema:DefinedTerm
115 N7b6fc7d581704846b28ac92dc2d5533c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Amino Acid Sequence
117 rdf:type schema:DefinedTerm
118 N85be9b05ae74431082ca929443131511 rdf:first sg:person.0622515432.21
119 rdf:rest Ne7608d00d9914f509b338452f255bc17
120 N88e54b95a0044c498adffd66ec72c667 schema:name readcube_id
121 schema:value b3d03743e6122027c40948d9866599f10419fd1951d62e646e5b15a1d8fc1e01
122 rdf:type schema:PropertyValue
123 N8fdf992628ed439798f122d4c12740f3 schema:name nlm_unique_id
124 schema:value 0211301
125 rdf:type schema:PropertyValue
126 Naba1577be04c40b6976b34ae94b7d133 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Glycophorin
128 rdf:type schema:DefinedTerm
129 Nad9f0c5242344323bfc94aada4637ebe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Melitten
131 rdf:type schema:DefinedTerm
132 Nb783ec5793bb468184efd1f37b009551 schema:name doi
133 schema:value 10.1007/bf01868495
134 rdf:type schema:PropertyValue
135 Nb958837488d540718fd304f5425333dc schema:name pubmed_id
136 schema:value 6808138
137 rdf:type schema:PropertyValue
138 Nc8aeb613cfef449e9ef9166a99a43c89 rdf:first sg:person.0662263014.06
139 rdf:rest N85be9b05ae74431082ca929443131511
140 Nc8e552c21388453c8ef83ad50256ebd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Membrane Proteins
142 rdf:type schema:DefinedTerm
143 Nc9b96799432542d58284595206fdfa1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Electrophysiology
145 rdf:type schema:DefinedTerm
146 Ncdf7429fa363481f8125f9463f27e80b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Cytoplasm
148 rdf:type schema:DefinedTerm
149 Ne7608d00d9914f509b338452f255bc17 rdf:first sg:person.01153515117.33
150 rdf:rest Nef7446e54e124edeb9d8434bd320ec47
151 Nef7446e54e124edeb9d8434bd320ec47 rdf:first sg:person.01201077602.72
152 rdf:rest N6ed58872bb6f49cd8e36bc74752ec758
153 Nfecef30aabec43abb97e0459cb519f29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name HLA Antigens
155 rdf:type schema:DefinedTerm
156 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
157 schema:name Biological Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
160 schema:name Biochemistry and Cell Biology
161 rdf:type schema:DefinedTerm
162 sg:journal.1012006 schema:issn 0022-2631
163 1432-1424
164 schema:name The Journal of Membrane Biology
165 rdf:type schema:Periodical
166 sg:person.01153515117.33 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
167 schema:familyName van Renswoude
168 schema:givenName J.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153515117.33
170 rdf:type schema:Person
171 sg:person.01201077602.72 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
172 schema:familyName Kempf
173 schema:givenName C.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201077602.72
175 rdf:type schema:Person
176 sg:person.01314201725.86 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
177 schema:familyName Klausner
178 schema:givenName R. D.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314201725.86
180 rdf:type schema:Person
181 sg:person.0622515432.21 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
182 schema:familyName Blumenthal
183 schema:givenName R.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622515432.21
185 rdf:type schema:Person
186 sg:person.0662263014.06 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
187 schema:familyName Weinstein
188 schema:givenName J. N.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662263014.06
190 rdf:type schema:Person
191 sg:pub.10.1007/978-1-4615-7467-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010783510
192 https://doi.org/10.1007/978-1-4615-7467-5
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/978-1-4684-0979-6_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010694197
195 https://doi.org/10.1007/978-1-4684-0979-6_6
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/bf01869662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052004497
198 https://doi.org/10.1007/bf01869662
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/276159a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036789968
201 https://doi.org/10.1038/276159a0
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/288333a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029797848
204 https://doi.org/10.1038/288333a0
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/291035a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007337931
207 https://doi.org/10.1038/291035a0
208 rdf:type schema:CreativeWork
209 https://app.dimensions.ai/details/publication/pub.1076754571 schema:CreativeWork
210 https://app.dimensions.ai/details/publication/pub.1081912611 schema:CreativeWork
211 https://app.dimensions.ai/details/publication/pub.1082129663 schema:CreativeWork
212 https://app.dimensions.ai/details/publication/pub.1082306475 schema:CreativeWork
213 https://doi.org/10.1002/9780470122860.ch3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021005146
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/0005-2736(73)90211-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026280011
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/0005-2736(77)90019-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045641417
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/0005-2736(77)90126-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001831643
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/0005-2736(78)90203-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017673801
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/0022-2836(74)90410-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018869818
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/0092-8674(80)90616-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018339537
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/0092-8674(81)90136-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012566284
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/0304-4157(75)90006-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053108029
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/s0006-3495(69)86396-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048408439
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/s0006-3495(74)85907-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038402143
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/s0070-2161(08)60677-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022179986
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1017/s0033583500000123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054816763
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1021/bi00590a028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055181901
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1021/cr60130a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053770011
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1042/bj1890475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011374325
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1073/pnas.72.7.2789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032931326
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1073/pnas.73.8.2852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013253020
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1073/pnas.74.8.3350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045300861
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1073/pnas.77.2.827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031880705
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1073/pnas.77.4.2023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034107528
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1073/pnas.77.8.4669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049826685
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1073/pnas.77.9.5087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011408732
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1083/jcb.67.3.835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026918290
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1083/jcb.67.3.852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029540846
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1083/jcb.72.3.568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020208793
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1085/jgp.74.4.457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021547860
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1085/jgp.77.4.445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028249398
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1111/j.1432-1033.1979.tb12876.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046150764
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1111/j.1432-1033.1979.tb12999.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037211391
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1111/j.1432-1033.1979.tb13100.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014593600
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1111/j.1749-6632.1978.tb41942.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044651119
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1111/j.1749-6632.1980.tb47238.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046318172
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1113/jphysiol.1952.sp004764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038260469
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1126/science.402030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062623769
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1126/science.69317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062641897
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1126/science.7001628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062643226
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1126/science.948756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062662108
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1146/annurev.bb.08.060179.000403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046752540
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1146/annurev.bi.45.070176.003315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000004009
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1146/annurev.bi.48.070179.000403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013384576
294 rdf:type schema:CreativeWork
295 https://doi.org/10.3109/10409238009105465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020977178
296 rdf:type schema:CreativeWork
297 https://www.grid.ac/institutes/grid.94365.3d schema:alternateName National Institutes of Health
298 schema:name Section of Membrane Structure and Function, Laboratory of Theoretical Biology, National Cancer Institute, National Institutes of Health, 20205, Bethesda, Maryland
299 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...