Flexible covariate effects in the proportional hazards model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-10

AUTHORS

Treyor Hastie, Lynn Sleeper, Robert Tibshirani

ABSTRACT

The proportional hazards model is frequently used in analyzing the results of clinical trials, when it is often the case that the outcomes are right-censored. This model allows one to measure treatment effects and simultaneously identify and adjust for prognostic factors that might influence the outcome. In this paper, we outline a class of semiparametric models that allows one to model prognostic factors nonlinearly, and have the data suggest the form of their effect. The methods are illustrated in an analysis of data from a breast cancer clinical trial. More... »

PAGES

241-250

References to SciGraph publications

  • 1990. Statistical Models in S in COMPSTAT
  • 1978. A Practical Guide to Splines in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01840837

    DOI

    http://dx.doi.org/10.1007/bf01840837

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018699666

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/1391990


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proportional Hazards Models", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Regression Analysis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Statistics and Data Analysis Research Department, AT&T Bell Laboratories, Murray Hill, New Jersey, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Statistics and Data Analysis Research Department, AT&T Bell Laboratories, Murray Hill, New Jersey, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hastie", 
            "givenName": "Treyor", 
            "id": "sg:person.01072256674.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072256674.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "New England Research Institute, 9 Galen St., 02172, Watertown, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.280460.8", 
              "name": [
                "New England Research Institute, 9 Galen St., 02172, Watertown, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sleeper", 
            "givenName": "Lynn", 
            "id": "sg:person.01134135765.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134135765.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Preventive Medicine and Biostatistics and Department of Statistics, University of Toronto, Toronto, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Department of Preventive Medicine and Biostatistics and Department of Statistics, University of Toronto, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tibshirani", 
            "givenName": "Robert", 
            "id": "sg:person.010253467037.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253467037.73"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-50096-1_48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021025657", 
              "https://doi.org/10.1007/978-3-642-50096-1_48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-6333-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705102", 
              "https://doi.org/10.1007/978-1-4612-6333-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-10", 
        "datePublishedReg": "1992-10-01", 
        "description": "The proportional hazards model is frequently used in analyzing the results of clinical trials, when it is often the case that the outcomes are right-censored. This model allows one to measure treatment effects and simultaneously identify and adjust for prognostic factors that might influence the outcome. In this paper, we outline a class of semiparametric models that allows one to model prognostic factors nonlinearly, and have the data suggest the form of their effect. The methods are illustrated in an analysis of data from a breast cancer clinical trial.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01840837", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1092777", 
            "issn": [
              "0167-6806", 
              "1573-7217"
            ], 
            "name": "Breast Cancer Research and Treatment", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "keywords": [
          "proportional hazards model", 
          "prognostic factors", 
          "clinical trials", 
          "hazards model", 
          "breast cancer clinical trials", 
          "cancer clinical trials", 
          "treatment effects", 
          "trials", 
          "outcomes", 
          "analysis of data", 
          "factors", 
          "effect", 
          "covariate effects", 
          "data", 
          "cases", 
          "model", 
          "results", 
          "analysis", 
          "flexible covariate effects", 
          "form", 
          "method", 
          "class", 
          "semiparametric model", 
          "paper"
        ], 
        "name": "Flexible covariate effects in the proportional hazards model", 
        "pagination": "241-250", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018699666"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01840837"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "1391990"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01840837", 
          "https://app.dimensions.ai/details/publication/pub.1018699666"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_249.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01840837"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01840837'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01840837'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01840837'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01840837'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      22 PREDICATES      62 URIs      52 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01840837 schema:about N2892769a9c6e47289e42a924f3b8544b
    2 N34b9a43bd19a4e7bad9de0820c3324bb
    3 N36d4f158a5bb4501846e4ad6746fad1e
    4 N5835d4def902463595a45a8edf74bb43
    5 N674d3c7f90874118acd1d83abb3dda54
    6 Nab70d04d33fc46fd831640b53faacae5
    7 Nb70f72bd17bd40a0a0559ee90f9e1b93
    8 Ndd5ac26c766943339575f21334bc600b
    9 Nf23d60acfa994f77a204506a699b2f85
    10 anzsrc-for:11
    11 anzsrc-for:1117
    12 schema:author N9fbf606204084fe58e7e771b701666e0
    13 schema:citation sg:pub.10.1007/978-1-4612-6333-3
    14 sg:pub.10.1007/978-3-642-50096-1_48
    15 schema:datePublished 1992-10
    16 schema:datePublishedReg 1992-10-01
    17 schema:description The proportional hazards model is frequently used in analyzing the results of clinical trials, when it is often the case that the outcomes are right-censored. This model allows one to measure treatment effects and simultaneously identify and adjust for prognostic factors that might influence the outcome. In this paper, we outline a class of semiparametric models that allows one to model prognostic factors nonlinearly, and have the data suggest the form of their effect. The methods are illustrated in an analysis of data from a breast cancer clinical trial.
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf Nb46db8f6bfcc4cf78b29518463f4c419
    22 Nf5aa5926089142129bcfe84e0e076262
    23 sg:journal.1092777
    24 schema:keywords analysis
    25 analysis of data
    26 breast cancer clinical trials
    27 cancer clinical trials
    28 cases
    29 class
    30 clinical trials
    31 covariate effects
    32 data
    33 effect
    34 factors
    35 flexible covariate effects
    36 form
    37 hazards model
    38 method
    39 model
    40 outcomes
    41 paper
    42 prognostic factors
    43 proportional hazards model
    44 results
    45 semiparametric model
    46 treatment effects
    47 trials
    48 schema:name Flexible covariate effects in the proportional hazards model
    49 schema:pagination 241-250
    50 schema:productId N75b431a350b54254a2eb7dcbd45adc4d
    51 Nb1a939d806c6453dab3447abb930527e
    52 Nddf1e45f3db44c0eaf5adeeb4fd4a405
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018699666
    54 https://doi.org/10.1007/bf01840837
    55 schema:sdDatePublished 2021-12-01T19:08
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N8d1dac7463e44f63bd07b3fbdc1ea972
    58 schema:url https://doi.org/10.1007/bf01840837
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N287583bf99394614990758be3da05655 rdf:first sg:person.01134135765.36
    63 rdf:rest N5cdef773c28845169f4746e886b15c48
    64 N2892769a9c6e47289e42a924f3b8544b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    65 schema:name Prognosis
    66 rdf:type schema:DefinedTerm
    67 N34b9a43bd19a4e7bad9de0820c3324bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    68 schema:name Aged
    69 rdf:type schema:DefinedTerm
    70 N36d4f158a5bb4501846e4ad6746fad1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    71 schema:name Regression Analysis
    72 rdf:type schema:DefinedTerm
    73 N5835d4def902463595a45a8edf74bb43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Middle Aged
    75 rdf:type schema:DefinedTerm
    76 N5cdef773c28845169f4746e886b15c48 rdf:first sg:person.010253467037.73
    77 rdf:rest rdf:nil
    78 N674d3c7f90874118acd1d83abb3dda54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Breast Neoplasms
    80 rdf:type schema:DefinedTerm
    81 N75b431a350b54254a2eb7dcbd45adc4d schema:name doi
    82 schema:value 10.1007/bf01840837
    83 rdf:type schema:PropertyValue
    84 N8d1dac7463e44f63bd07b3fbdc1ea972 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 N9fbf606204084fe58e7e771b701666e0 rdf:first sg:person.01072256674.29
    87 rdf:rest N287583bf99394614990758be3da05655
    88 Nab70d04d33fc46fd831640b53faacae5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Humans
    90 rdf:type schema:DefinedTerm
    91 Nb1a939d806c6453dab3447abb930527e schema:name dimensions_id
    92 schema:value pub.1018699666
    93 rdf:type schema:PropertyValue
    94 Nb46db8f6bfcc4cf78b29518463f4c419 schema:issueNumber 3
    95 rdf:type schema:PublicationIssue
    96 Nb70f72bd17bd40a0a0559ee90f9e1b93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Adult
    98 rdf:type schema:DefinedTerm
    99 Ndd5ac26c766943339575f21334bc600b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Female
    101 rdf:type schema:DefinedTerm
    102 Nddf1e45f3db44c0eaf5adeeb4fd4a405 schema:name pubmed_id
    103 schema:value 1391990
    104 rdf:type schema:PropertyValue
    105 Nf23d60acfa994f77a204506a699b2f85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Proportional Hazards Models
    107 rdf:type schema:DefinedTerm
    108 Nf5aa5926089142129bcfe84e0e076262 schema:volumeNumber 22
    109 rdf:type schema:PublicationVolume
    110 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Medical and Health Sciences
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Public Health and Health Services
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1092777 schema:issn 0167-6806
    117 1573-7217
    118 schema:name Breast Cancer Research and Treatment
    119 schema:publisher Springer Nature
    120 rdf:type schema:Periodical
    121 sg:person.010253467037.73 schema:affiliation grid-institutes:grid.17063.33
    122 schema:familyName Tibshirani
    123 schema:givenName Robert
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253467037.73
    125 rdf:type schema:Person
    126 sg:person.01072256674.29 schema:affiliation grid-institutes:None
    127 schema:familyName Hastie
    128 schema:givenName Treyor
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072256674.29
    130 rdf:type schema:Person
    131 sg:person.01134135765.36 schema:affiliation grid-institutes:grid.280460.8
    132 schema:familyName Sleeper
    133 schema:givenName Lynn
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134135765.36
    135 rdf:type schema:Person
    136 sg:pub.10.1007/978-1-4612-6333-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705102
    137 https://doi.org/10.1007/978-1-4612-6333-3
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/978-3-642-50096-1_48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021025657
    140 https://doi.org/10.1007/978-3-642-50096-1_48
    141 rdf:type schema:CreativeWork
    142 grid-institutes:None schema:alternateName Statistics and Data Analysis Research Department, AT&T Bell Laboratories, Murray Hill, New Jersey, USA
    143 schema:name Statistics and Data Analysis Research Department, AT&T Bell Laboratories, Murray Hill, New Jersey, USA
    144 rdf:type schema:Organization
    145 grid-institutes:grid.17063.33 schema:alternateName Department of Preventive Medicine and Biostatistics and Department of Statistics, University of Toronto, Toronto, Ontario, Canada
    146 schema:name Department of Preventive Medicine and Biostatistics and Department of Statistics, University of Toronto, Toronto, Ontario, Canada
    147 rdf:type schema:Organization
    148 grid-institutes:grid.280460.8 schema:alternateName New England Research Institute, 9 Galen St., 02172, Watertown, MA, USA
    149 schema:name New England Research Institute, 9 Galen St., 02172, Watertown, MA, USA
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...