Simple quasidoubles of projective planes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-02

AUTHORS

Dieter Jungnickel, Klaus Vedder

ABSTRACT

We show that the number of (simple) designsS2(2,q + 1,q2 +q + 1), whereq is a power of a prime, grows at least asO(q!).

PAGES

96-100

References to SciGraph publications

Journal

TITLE

Aequationes mathematicae

ISSUE

1

VOLUME

34

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01840128

DOI

http://dx.doi.org/10.1007/bf01840128

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038974643


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Siemens (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Mathematisches Institut, Justus-Liebig-Universit\u00e4t, Arndtstr. 2, 6300, Gie\u00dfen, Federal Republic of Germany", 
            "Siemens AG, ZT ZTI SYS 413, Otto Hahn-Ring 6, D-8000, M\u00fcnchen 83, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jungnickel", 
        "givenName": "Dieter", 
        "id": "sg:person.016273474670.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Mathematisches Institut, Justus-Liebig-Universit\u00e4t, Arndtstr. 2, 6300, Gie\u00dfen, Federal Republic of Germany", 
            "Siemens AG, ZT ZTI SYS 413, Otto Hahn-Ring 6, D-8000, M\u00fcnchen 83, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vedder", 
        "givenName": "Klaus", 
        "id": "sg:person.013477776033.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013477776033.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-010-2196-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035609135", 
          "https://doi.org/10.1007/978-94-010-2196-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-2196-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035609135", 
          "https://doi.org/10.1007/978-94-010-2196-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01227840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040928908", 
          "https://doi.org/10.1007/bf01227840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01227840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040928908", 
          "https://doi.org/10.1007/bf01227840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01115362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043037909", 
          "https://doi.org/10.1007/bf01115362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01115362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043037909", 
          "https://doi.org/10.1007/bf01115362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(83)90036-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051361783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-0208(08)72986-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052840034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511566066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098679840"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-02", 
    "datePublishedReg": "1987-02-01", 
    "description": "We show that the number of (simple) designsS2(2,q + 1,q2 +q + 1), whereq is a power of a prime, grows at least asO(q!).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01840128", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136868", 
        "issn": [
          "0001-9054", 
          "1420-8903"
        ], 
        "name": "Aequationes mathematicae", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "name": "Simple quasidoubles of projective planes", 
    "pagination": "96-100", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b9a7642eabc12e95799246c9c860e7e9675693d79fb45bcac2e4ed7bceac0970"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01840128"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038974643"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01840128", 
      "https://app.dimensions.ai/details/publication/pub.1038974643"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01840128"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01840128'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01840128'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01840128'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01840128'


 

This table displays all metadata directly associated to this object as RDF triples.

82 TRIPLES      20 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01840128 schema:author Na4100506705b443a9f068c07f0c22d1b
2 schema:citation sg:pub.10.1007/978-94-010-2196-8
3 sg:pub.10.1007/bf01115362
4 sg:pub.10.1007/bf01227840
5 https://doi.org/10.1016/0012-365x(83)90036-5
6 https://doi.org/10.1016/s0304-0208(08)72986-4
7 https://doi.org/10.1017/cbo9780511566066
8 schema:datePublished 1987-02
9 schema:datePublishedReg 1987-02-01
10 schema:description We show that the number of (simple) designsS2(2,q + 1,q2 +q + 1), whereq is a power of a prime, grows at least asO(q!).
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N22e7febe0c7043d4a7c104d9df2d5f1d
15 Ne4eca9ea900444de832b4f41eefc68bc
16 sg:journal.1136868
17 schema:name Simple quasidoubles of projective planes
18 schema:pagination 96-100
19 schema:productId N4686d0d356f94ff59f69bb19f29d0aeb
20 Nb8209108dc3a48828bf82d09147a657b
21 Nbae170c1c50c486892dea31b8cbc05f4
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038974643
23 https://doi.org/10.1007/bf01840128
24 schema:sdDatePublished 2019-04-10T22:29
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nd2b5e33ae9214ad3a176503362de5ec2
27 schema:url http://link.springer.com/10.1007/BF01840128
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N22e7febe0c7043d4a7c104d9df2d5f1d schema:issueNumber 1
32 rdf:type schema:PublicationIssue
33 N4686d0d356f94ff59f69bb19f29d0aeb schema:name dimensions_id
34 schema:value pub.1038974643
35 rdf:type schema:PropertyValue
36 Na4100506705b443a9f068c07f0c22d1b rdf:first sg:person.016273474670.91
37 rdf:rest Na6a06dffa15b4e738d10e82095a9e166
38 Na6a06dffa15b4e738d10e82095a9e166 rdf:first sg:person.013477776033.51
39 rdf:rest rdf:nil
40 Nb8209108dc3a48828bf82d09147a657b schema:name doi
41 schema:value 10.1007/bf01840128
42 rdf:type schema:PropertyValue
43 Nbae170c1c50c486892dea31b8cbc05f4 schema:name readcube_id
44 schema:value b9a7642eabc12e95799246c9c860e7e9675693d79fb45bcac2e4ed7bceac0970
45 rdf:type schema:PropertyValue
46 Nd2b5e33ae9214ad3a176503362de5ec2 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Ne4eca9ea900444de832b4f41eefc68bc schema:volumeNumber 34
49 rdf:type schema:PublicationVolume
50 sg:journal.1136868 schema:issn 0001-9054
51 1420-8903
52 schema:name Aequationes mathematicae
53 rdf:type schema:Periodical
54 sg:person.013477776033.51 schema:affiliation https://www.grid.ac/institutes/grid.5406.7
55 schema:familyName Vedder
56 schema:givenName Klaus
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013477776033.51
58 rdf:type schema:Person
59 sg:person.016273474670.91 schema:affiliation https://www.grid.ac/institutes/grid.5406.7
60 schema:familyName Jungnickel
61 schema:givenName Dieter
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91
63 rdf:type schema:Person
64 sg:pub.10.1007/978-94-010-2196-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035609135
65 https://doi.org/10.1007/978-94-010-2196-8
66 rdf:type schema:CreativeWork
67 sg:pub.10.1007/bf01115362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043037909
68 https://doi.org/10.1007/bf01115362
69 rdf:type schema:CreativeWork
70 sg:pub.10.1007/bf01227840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040928908
71 https://doi.org/10.1007/bf01227840
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/0012-365x(83)90036-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051361783
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1016/s0304-0208(08)72986-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052840034
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1017/cbo9780511566066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098679840
78 rdf:type schema:CreativeWork
79 https://www.grid.ac/institutes/grid.5406.7 schema:alternateName Siemens (Germany)
80 schema:name Mathematisches Institut, Justus-Liebig-Universität, Arndtstr. 2, 6300, Gießen, Federal Republic of Germany
81 Siemens AG, ZT ZTI SYS 413, Otto Hahn-Ring 6, D-8000, München 83, Federal Republic of Germany
82 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...