Simple quasidoubles of projective planes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-02

AUTHORS

Dieter Jungnickel, Klaus Vedder

ABSTRACT

We show that the number of (simple) designsS2(2,q + 1,q2 +q + 1), whereq is a power of a prime, grows at least asO(q!).

PAGES

96-100

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01840128

DOI

http://dx.doi.org/10.1007/bf01840128

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038974643


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Siemens AG, ZT ZTI SYS 413, Otto Hahn-Ring 6, D-8000, M\u00fcnchen 83, Federal Republic of Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Mathematisches Institut, Justus-Liebig-Universit\u00e4t, Arndtstr. 2, 6300, Gie\u00dfen, Federal Republic of Germany", 
            "Siemens AG, ZT ZTI SYS 413, Otto Hahn-Ring 6, D-8000, M\u00fcnchen 83, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jungnickel", 
        "givenName": "Dieter", 
        "id": "sg:person.016273474670.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens AG, ZT ZTI SYS 413, Otto Hahn-Ring 6, D-8000, M\u00fcnchen 83, Federal Republic of Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Mathematisches Institut, Justus-Liebig-Universit\u00e4t, Arndtstr. 2, 6300, Gie\u00dfen, Federal Republic of Germany", 
            "Siemens AG, ZT ZTI SYS 413, Otto Hahn-Ring 6, D-8000, M\u00fcnchen 83, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vedder", 
        "givenName": "Klaus", 
        "id": "sg:person.013477776033.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013477776033.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01227840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040928908", 
          "https://doi.org/10.1007/bf01227840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-2196-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035609135", 
          "https://doi.org/10.1007/978-94-010-2196-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01115362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043037909", 
          "https://doi.org/10.1007/bf01115362"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-02", 
    "datePublishedReg": "1987-02-01", 
    "description": "We show that the number of (simple) designsS2(2,q + 1,q2 +q + 1), whereq is a power of a prime, grows at least asO(q!).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01840128", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136868", 
        "issn": [
          "0001-9054", 
          "1420-8903"
        ], 
        "name": "Aequationes mathematicae", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "keywords": [
      "projective plane", 
      "whereq", 
      "primes", 
      "number", 
      "power", 
      "plane", 
      "Simple quasidoubles", 
      "quasidoubles"
    ], 
    "name": "Simple quasidoubles of projective planes", 
    "pagination": "96-100", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038974643"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01840128"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01840128", 
      "https://app.dimensions.ai/details/publication/pub.1038974643"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T17:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_184.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01840128"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01840128'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01840128'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01840128'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01840128'


 

This table displays all metadata directly associated to this object as RDF triples.

86 TRIPLES      22 PREDICATES      37 URIs      26 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01840128 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nd13d8db3031d46139af23955619629e5
4 schema:citation sg:pub.10.1007/978-94-010-2196-8
5 sg:pub.10.1007/bf01115362
6 sg:pub.10.1007/bf01227840
7 schema:datePublished 1987-02
8 schema:datePublishedReg 1987-02-01
9 schema:description We show that the number of (simple) designsS2(2,q + 1,q2 +q + 1), whereq is a power of a prime, grows at least asO(q!).
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Nb77c62ed2fc0403c876c066a23d4baad
14 Nbf2ce0dad5424a8fac56a6f04fcc0fe6
15 sg:journal.1136868
16 schema:keywords Simple quasidoubles
17 number
18 plane
19 power
20 primes
21 projective plane
22 quasidoubles
23 whereq
24 schema:name Simple quasidoubles of projective planes
25 schema:pagination 96-100
26 schema:productId N6431d55a1bf1458f95a85cc9047c117d
27 N9cf4ff3163a14029b43f3a2fef481c16
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038974643
29 https://doi.org/10.1007/bf01840128
30 schema:sdDatePublished 2021-11-01T17:56
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Na5ae00487ed94e7bb2a8a4cd5264b707
33 schema:url https://doi.org/10.1007/bf01840128
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N50de69a4a03c402abf28c7f9d84e6608 rdf:first sg:person.013477776033.51
38 rdf:rest rdf:nil
39 N6431d55a1bf1458f95a85cc9047c117d schema:name dimensions_id
40 schema:value pub.1038974643
41 rdf:type schema:PropertyValue
42 N9cf4ff3163a14029b43f3a2fef481c16 schema:name doi
43 schema:value 10.1007/bf01840128
44 rdf:type schema:PropertyValue
45 Na5ae00487ed94e7bb2a8a4cd5264b707 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 Nb77c62ed2fc0403c876c066a23d4baad schema:volumeNumber 34
48 rdf:type schema:PublicationVolume
49 Nbf2ce0dad5424a8fac56a6f04fcc0fe6 schema:issueNumber 1
50 rdf:type schema:PublicationIssue
51 Nd13d8db3031d46139af23955619629e5 rdf:first sg:person.016273474670.91
52 rdf:rest N50de69a4a03c402abf28c7f9d84e6608
53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
54 schema:name Mathematical Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
57 schema:name Pure Mathematics
58 rdf:type schema:DefinedTerm
59 sg:journal.1136868 schema:issn 0001-9054
60 1420-8903
61 schema:name Aequationes mathematicae
62 schema:publisher Springer Nature
63 rdf:type schema:Periodical
64 sg:person.013477776033.51 schema:affiliation grid-institutes:grid.5406.7
65 schema:familyName Vedder
66 schema:givenName Klaus
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013477776033.51
68 rdf:type schema:Person
69 sg:person.016273474670.91 schema:affiliation grid-institutes:grid.5406.7
70 schema:familyName Jungnickel
71 schema:givenName Dieter
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91
73 rdf:type schema:Person
74 sg:pub.10.1007/978-94-010-2196-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035609135
75 https://doi.org/10.1007/978-94-010-2196-8
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf01115362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043037909
78 https://doi.org/10.1007/bf01115362
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf01227840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040928908
81 https://doi.org/10.1007/bf01227840
82 rdf:type schema:CreativeWork
83 grid-institutes:grid.5406.7 schema:alternateName Siemens AG, ZT ZTI SYS 413, Otto Hahn-Ring 6, D-8000, München 83, Federal Republic of Germany
84 schema:name Mathematisches Institut, Justus-Liebig-Universität, Arndtstr. 2, 6300, Gießen, Federal Republic of Germany
85 Siemens AG, ZT ZTI SYS 413, Otto Hahn-Ring 6, D-8000, München 83, Federal Republic of Germany
86 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...