The existence of Room squares View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1975-02

AUTHORS

R. C. Mullin, W. D. Wallis

ABSTRACT

The authors give a condensed proof of the existence of Room squares for positive odd sides except 3 and 5. Some areas of current research on Room squares are also discussed.

PAGES

1-7

References to SciGraph publications

  • 1970-06. Orthogonal steiner systems in AEQUATIONES MATHEMATICAE
  • 1972. Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices in NONE
  • 1973-02. On balanced room squares and complete balanced Howell rotations in AEQUATIONES MATHEMATICAE
  • 1971-06. Puintuplication of Room squares in AEQUATIONES MATHEMATICAE
  • 1971-06. On the existence of Room squares of order 4n in AEQUATIONES MATHEMATICAE
  • 1971-02. A recursive construction for Room designs in AEQUATIONES MATHEMATICAE
  • 1973-06. Construction of perpendicular steiner quasigroups in AEQUATIONES MATHEMATICAE
  • 1973-06. On the existence of room squares in AEQUATIONES MATHEMATICAE
  • 1981-12. Room designs and one-factorizations in AEQUATIONES MATHEMATICAE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01834113

    DOI

    http://dx.doi.org/10.1007/bf01834113

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018039054


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Newcastle, 2308, New South Wales, Australia", 
              "id": "http://www.grid.ac/institutes/grid.266842.c", 
              "name": [
                "Department of Combinatorics, University of Waterloo, Waterloo, Ontario, Canada", 
                "Department of Mathematics, University of Newcastle, 2308, New South Wales, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mullin", 
            "givenName": "R. C.", 
            "id": "sg:person.014125263130.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014125263130.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Newcastle, 2308, New South Wales, Australia", 
              "id": "http://www.grid.ac/institutes/grid.266842.c", 
              "name": [
                "Department of Combinatorics, University of Waterloo, Waterloo, Ontario, Canada", 
                "Department of Mathematics, University of Newcastle, 2308, New South Wales, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wallis", 
            "givenName": "W. D.", 
            "id": "sg:person.016356054105.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016356054105.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01832621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030459847", 
              "https://doi.org/10.1007/bf01832621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02190160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033109860", 
              "https://doi.org/10.1007/bf02190160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01818519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038922377", 
              "https://doi.org/10.1007/bf01818519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01819767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000502024", 
              "https://doi.org/10.1007/bf01819767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01838192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030051992", 
              "https://doi.org/10.1007/bf01838192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0069907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036778583", 
              "https://doi.org/10.1007/bfb0069907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01832634", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045632132", 
              "https://doi.org/10.1007/bf01832634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01833236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014114392", 
              "https://doi.org/10.1007/bf01833236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01818448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044850800", 
              "https://doi.org/10.1007/bf01818448"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1975-02", 
        "datePublishedReg": "1975-02-01", 
        "description": "The authors give a condensed proof of the existence of Room squares for positive odd sides except 3 and 5. Some areas of current research on Room squares are also discussed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01834113", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136868", 
            "issn": [
              "0001-9054", 
              "1420-8903"
            ], 
            "name": "Aequationes mathematicae", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "Room squares", 
          "squares", 
          "odd side", 
          "existence", 
          "proof", 
          "authors", 
          "side", 
          "current research", 
          "area", 
          "research"
        ], 
        "name": "The existence of Room squares", 
        "pagination": "1-7", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018039054"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01834113"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01834113", 
          "https://app.dimensions.ai/details/publication/pub.1018039054"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_120.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01834113"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01834113'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01834113'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01834113'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01834113'


     

    This table displays all metadata directly associated to this object as RDF triples.

    111 TRIPLES      21 PREDICATES      44 URIs      27 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01834113 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N599abe160fe54820b58b74365175b42a
    4 schema:citation sg:pub.10.1007/bf01818448
    5 sg:pub.10.1007/bf01818519
    6 sg:pub.10.1007/bf01819767
    7 sg:pub.10.1007/bf01832621
    8 sg:pub.10.1007/bf01832634
    9 sg:pub.10.1007/bf01833236
    10 sg:pub.10.1007/bf01838192
    11 sg:pub.10.1007/bf02190160
    12 sg:pub.10.1007/bfb0069907
    13 schema:datePublished 1975-02
    14 schema:datePublishedReg 1975-02-01
    15 schema:description The authors give a condensed proof of the existence of Room squares for positive odd sides except 3 and 5. Some areas of current research on Room squares are also discussed.
    16 schema:genre article
    17 schema:isAccessibleForFree false
    18 schema:isPartOf Ne2e9d4f21260472ab15b162ca2cdb47f
    19 Nf4142f59d9444e7e9c812ddce3db08e0
    20 sg:journal.1136868
    21 schema:keywords Room squares
    22 area
    23 authors
    24 current research
    25 existence
    26 odd side
    27 proof
    28 research
    29 side
    30 squares
    31 schema:name The existence of Room squares
    32 schema:pagination 1-7
    33 schema:productId N4e12daecd605456baa025d14ebeb5997
    34 N55c15bb8a30249789070457bea57fc91
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018039054
    36 https://doi.org/10.1007/bf01834113
    37 schema:sdDatePublished 2022-12-01T06:17
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher Na82dbd3d34f24e12b1746fb29108d188
    40 schema:url https://doi.org/10.1007/bf01834113
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N4e12daecd605456baa025d14ebeb5997 schema:name doi
    45 schema:value 10.1007/bf01834113
    46 rdf:type schema:PropertyValue
    47 N55c15bb8a30249789070457bea57fc91 schema:name dimensions_id
    48 schema:value pub.1018039054
    49 rdf:type schema:PropertyValue
    50 N599abe160fe54820b58b74365175b42a rdf:first sg:person.014125263130.39
    51 rdf:rest Na650a28e6892467a9900b0fe8444590b
    52 Na650a28e6892467a9900b0fe8444590b rdf:first sg:person.016356054105.74
    53 rdf:rest rdf:nil
    54 Na82dbd3d34f24e12b1746fb29108d188 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 Ne2e9d4f21260472ab15b162ca2cdb47f schema:issueNumber 1-2
    57 rdf:type schema:PublicationIssue
    58 Nf4142f59d9444e7e9c812ddce3db08e0 schema:volumeNumber 13
    59 rdf:type schema:PublicationVolume
    60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Mathematical Sciences
    62 rdf:type schema:DefinedTerm
    63 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Pure Mathematics
    65 rdf:type schema:DefinedTerm
    66 sg:journal.1136868 schema:issn 0001-9054
    67 1420-8903
    68 schema:name Aequationes mathematicae
    69 schema:publisher Springer Nature
    70 rdf:type schema:Periodical
    71 sg:person.014125263130.39 schema:affiliation grid-institutes:grid.266842.c
    72 schema:familyName Mullin
    73 schema:givenName R. C.
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014125263130.39
    75 rdf:type schema:Person
    76 sg:person.016356054105.74 schema:affiliation grid-institutes:grid.266842.c
    77 schema:familyName Wallis
    78 schema:givenName W. D.
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016356054105.74
    80 rdf:type schema:Person
    81 sg:pub.10.1007/bf01818448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044850800
    82 https://doi.org/10.1007/bf01818448
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/bf01818519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038922377
    85 https://doi.org/10.1007/bf01818519
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/bf01819767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000502024
    88 https://doi.org/10.1007/bf01819767
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/bf01832621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030459847
    91 https://doi.org/10.1007/bf01832621
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/bf01832634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045632132
    94 https://doi.org/10.1007/bf01832634
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/bf01833236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014114392
    97 https://doi.org/10.1007/bf01833236
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bf01838192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030051992
    100 https://doi.org/10.1007/bf01838192
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf02190160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033109860
    103 https://doi.org/10.1007/bf02190160
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/bfb0069907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036778583
    106 https://doi.org/10.1007/bfb0069907
    107 rdf:type schema:CreativeWork
    108 grid-institutes:grid.266842.c schema:alternateName Department of Mathematics, University of Newcastle, 2308, New South Wales, Australia
    109 schema:name Department of Combinatorics, University of Waterloo, Waterloo, Ontario, Canada
    110 Department of Mathematics, University of Newcastle, 2308, New South Wales, Australia
    111 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...