Lie algebra bases for the pseudo-orthogonal groups View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1975-04

AUTHORS

J. F. Cornwell

ABSTRACT

The isomorphic mappings between the canonical bases appearing in the general structure theory of semi-simple real Lie algebras and the bases obtained directly from the pseudoorthogonal groups are investigated in detail, and it is shown that these mappings can be cast in a remarkable simple form which is valid for all cases. More... »

PAGES

333-343

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01810426

DOI

http://dx.doi.org/10.1007/bf01810426

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039187275


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Theoretical Physics, University of St. Andrews, North Haugh St. Andrews, Fife, Scotland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cornwell", 
        "givenName": "J. F.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0034-4877(72)90023-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006143360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4877(71)90008-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009227130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4877(74)90015-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032311544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4877(71)90012-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053445903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1665254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057743334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1665255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057743335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1666559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057744632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1704835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057774504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1704885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057774552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1931212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057832835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptps.28.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063144785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/asens.676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084409186"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1975-04", 
    "datePublishedReg": "1975-04-01", 
    "description": "The isomorphic mappings between the canonical bases appearing in the general structure theory of semi-simple real Lie algebras and the bases obtained directly from the pseudoorthogonal groups are investigated in detail, and it is shown that these mappings can be cast in a remarkable simple form which is valid for all cases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01810426", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053677", 
        "issn": [
          "0020-7748", 
          "1572-9575"
        ], 
        "name": "International Journal of Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Lie algebra bases for the pseudo-orthogonal groups", 
    "pagination": "333-343", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "baaaf413d9c33686d770729a79151bcbeb61f0f0b1e85c48221d6f0fcfeaaf30"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01810426"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039187275"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01810426", 
      "https://app.dimensions.ai/details/publication/pub.1039187275"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113667_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01810426"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01810426'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01810426'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01810426'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01810426'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01810426 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5b83bb7f969541c48c3d883b5de47795
4 schema:citation https://doi.org/10.1016/0034-4877(71)90008-5
5 https://doi.org/10.1016/0034-4877(71)90012-7
6 https://doi.org/10.1016/0034-4877(72)90023-7
7 https://doi.org/10.1016/0034-4877(74)90015-9
8 https://doi.org/10.1063/1.1665254
9 https://doi.org/10.1063/1.1665255
10 https://doi.org/10.1063/1.1666559
11 https://doi.org/10.1063/1.1704835
12 https://doi.org/10.1063/1.1704885
13 https://doi.org/10.1063/1.1931212
14 https://doi.org/10.1143/ptps.28.1
15 https://doi.org/10.24033/asens.676
16 schema:datePublished 1975-04
17 schema:datePublishedReg 1975-04-01
18 schema:description The isomorphic mappings between the canonical bases appearing in the general structure theory of semi-simple real Lie algebras and the bases obtained directly from the pseudoorthogonal groups are investigated in detail, and it is shown that these mappings can be cast in a remarkable simple form which is valid for all cases.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N596968b9515443b3950f0dbccca10d2d
23 Nce83275890414ad0b824024eb2b209e7
24 sg:journal.1053677
25 schema:name Lie algebra bases for the pseudo-orthogonal groups
26 schema:pagination 333-343
27 schema:productId N013fc4c7bd514adcbaadf2601e28dcd3
28 N4b42293db5c4478c81c4dad13934d559
29 Nffe1e940c7414075a010e3ca25c36fa1
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039187275
31 https://doi.org/10.1007/bf01810426
32 schema:sdDatePublished 2019-04-11T10:35
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N745e6193ef434583b57010834ec04987
35 schema:url http://link.springer.com/10.1007/BF01810426
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N013fc4c7bd514adcbaadf2601e28dcd3 schema:name readcube_id
40 schema:value baaaf413d9c33686d770729a79151bcbeb61f0f0b1e85c48221d6f0fcfeaaf30
41 rdf:type schema:PropertyValue
42 N3f7f0b52b3eb49edab7bf204061168f2 schema:affiliation Ne932ebc464c84d1caa1afe6d4a75a4c4
43 schema:familyName Cornwell
44 schema:givenName J. F.
45 rdf:type schema:Person
46 N4b42293db5c4478c81c4dad13934d559 schema:name doi
47 schema:value 10.1007/bf01810426
48 rdf:type schema:PropertyValue
49 N596968b9515443b3950f0dbccca10d2d schema:volumeNumber 12
50 rdf:type schema:PublicationVolume
51 N5b83bb7f969541c48c3d883b5de47795 rdf:first N3f7f0b52b3eb49edab7bf204061168f2
52 rdf:rest rdf:nil
53 N745e6193ef434583b57010834ec04987 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nce83275890414ad0b824024eb2b209e7 schema:issueNumber 5
56 rdf:type schema:PublicationIssue
57 Ne932ebc464c84d1caa1afe6d4a75a4c4 schema:name Department of Theoretical Physics, University of St. Andrews, North Haugh St. Andrews, Fife, Scotland
58 rdf:type schema:Organization
59 Nffe1e940c7414075a010e3ca25c36fa1 schema:name dimensions_id
60 schema:value pub.1039187275
61 rdf:type schema:PropertyValue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1053677 schema:issn 0020-7748
69 1572-9575
70 schema:name International Journal of Theoretical Physics
71 rdf:type schema:Periodical
72 https://doi.org/10.1016/0034-4877(71)90008-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009227130
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1016/0034-4877(71)90012-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053445903
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/0034-4877(72)90023-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006143360
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/0034-4877(74)90015-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032311544
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1063/1.1665254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057743334
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1063/1.1665255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057743335
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1063/1.1666559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057744632
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1063/1.1704835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774504
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1063/1.1704885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774552
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1063/1.1931212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057832835
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1143/ptps.28.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063144785
93 rdf:type schema:CreativeWork
94 https://doi.org/10.24033/asens.676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084409186
95 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...