Second-order scalar-tensor field equations in a four-dimensional space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1974-09

AUTHORS

Gregory Walter Horndeski

ABSTRACT

Lagrange scalar densities which are concomitants of a pseudo-Riemannian metric-tensor, a scalar field and their derivatives of arbitrary order are considered. The most general second-order Euler-Lagrange tensors derivable from such a Lagrangian in a four-dimensional space are constructed, and it is shown that these Euler-Lagrange tensors may be obtained from a Lagrangian which is at most of second order in the derivatives of the field functions. More... »

PAGES

363-384

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01807638

DOI

http://dx.doi.org/10.1007/bf01807638

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017819398


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horndeski", 
        "givenName": "Gregory Walter", 
        "id": "sg:person.011153342702.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153342702.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s1446788700011125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016682587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01817753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025518762", 
          "https://doi.org/10.1007/bf01817753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00668828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030073193", 
          "https://doi.org/10.1007/bf00668828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00668828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030073193", 
          "https://doi.org/10.1007/bf00668828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00248156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045871169", 
          "https://doi.org/10.1007/bf00248156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00248156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045871169", 
          "https://doi.org/10.1007/bf00248156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03016051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053436398", 
          "https://doi.org/10.1007/bf03016051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03016051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053436398", 
          "https://doi.org/10.1007/bf03016051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100046144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053881373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1665613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057743693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.124.925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060424827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.124.925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060424827"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1974-09", 
    "datePublishedReg": "1974-09-01", 
    "description": "Lagrange scalar densities which are concomitants of a pseudo-Riemannian metric-tensor, a scalar field and their derivatives of arbitrary order are considered. The most general second-order Euler-Lagrange tensors derivable from such a Lagrangian in a four-dimensional space are constructed, and it is shown that these Euler-Lagrange tensors may be obtained from a Lagrangian which is at most of second order in the derivatives of the field functions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01807638", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053677", 
        "issn": [
          "0020-7748", 
          "1572-9575"
        ], 
        "name": "International Journal of Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Second-order scalar-tensor field equations in a four-dimensional space", 
    "pagination": "363-384", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "54e751323c4af2d3eba0ac958fc73fe835050bbf0be1ff7ef4e690c3ca7149aa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01807638"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017819398"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01807638", 
      "https://app.dimensions.ai/details/publication/pub.1017819398"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113658_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01807638"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01807638'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01807638'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01807638'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01807638'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01807638 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1f3f2fc64d2643ddbeb2b336d8ba6eb5
4 schema:citation sg:pub.10.1007/bf00248156
5 sg:pub.10.1007/bf00668828
6 sg:pub.10.1007/bf01817753
7 sg:pub.10.1007/bf03016051
8 https://doi.org/10.1017/s0305004100046144
9 https://doi.org/10.1017/s1446788700011125
10 https://doi.org/10.1063/1.1665613
11 https://doi.org/10.1103/physrev.124.925
12 schema:datePublished 1974-09
13 schema:datePublishedReg 1974-09-01
14 schema:description Lagrange scalar densities which are concomitants of a pseudo-Riemannian metric-tensor, a scalar field and their derivatives of arbitrary order are considered. The most general second-order Euler-Lagrange tensors derivable from such a Lagrangian in a four-dimensional space are constructed, and it is shown that these Euler-Lagrange tensors may be obtained from a Lagrangian which is at most of second order in the derivatives of the field functions.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N7346a307e4f34ee89cada4d63c52565a
19 Ne0ebd1ed9b86421b86e32b1fafa13c1b
20 sg:journal.1053677
21 schema:name Second-order scalar-tensor field equations in a four-dimensional space
22 schema:pagination 363-384
23 schema:productId N2c39244233084c88a156260d61784e4d
24 N7790faf29a5342969809f5b9b932b341
25 N839d36fc6c3c4ea49b4587afc03f60de
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017819398
27 https://doi.org/10.1007/bf01807638
28 schema:sdDatePublished 2019-04-11T10:32
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nb3eb9d5f772a49f0b57a10c9f4c297f3
31 schema:url http://link.springer.com/10.1007/BF01807638
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N1f3f2fc64d2643ddbeb2b336d8ba6eb5 rdf:first sg:person.011153342702.39
36 rdf:rest rdf:nil
37 N2c39244233084c88a156260d61784e4d schema:name doi
38 schema:value 10.1007/bf01807638
39 rdf:type schema:PropertyValue
40 N7346a307e4f34ee89cada4d63c52565a schema:volumeNumber 10
41 rdf:type schema:PublicationVolume
42 N7790faf29a5342969809f5b9b932b341 schema:name dimensions_id
43 schema:value pub.1017819398
44 rdf:type schema:PropertyValue
45 N839d36fc6c3c4ea49b4587afc03f60de schema:name readcube_id
46 schema:value 54e751323c4af2d3eba0ac958fc73fe835050bbf0be1ff7ef4e690c3ca7149aa
47 rdf:type schema:PropertyValue
48 Nb3eb9d5f772a49f0b57a10c9f4c297f3 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Ne0ebd1ed9b86421b86e32b1fafa13c1b schema:issueNumber 6
51 rdf:type schema:PublicationIssue
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
56 schema:name Pure Mathematics
57 rdf:type schema:DefinedTerm
58 sg:journal.1053677 schema:issn 0020-7748
59 1572-9575
60 schema:name International Journal of Theoretical Physics
61 rdf:type schema:Periodical
62 sg:person.011153342702.39 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
63 schema:familyName Horndeski
64 schema:givenName Gregory Walter
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153342702.39
66 rdf:type schema:Person
67 sg:pub.10.1007/bf00248156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045871169
68 https://doi.org/10.1007/bf00248156
69 rdf:type schema:CreativeWork
70 sg:pub.10.1007/bf00668828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030073193
71 https://doi.org/10.1007/bf00668828
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/bf01817753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025518762
74 https://doi.org/10.1007/bf01817753
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf03016051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053436398
77 https://doi.org/10.1007/bf03016051
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1017/s0305004100046144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053881373
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1017/s1446788700011125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016682587
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1063/1.1665613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057743693
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1103/physrev.124.925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060424827
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
88 schema:name Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...