On investigating the statistical properties of the populous path algorithm by computer simulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1978-03

AUTHORS

John Czelusniak, Morris Goodman, G. William Moore

ABSTRACT

Goodman et al.'s (1974) populous path algorithm for estimating hidden mutational change in protein evolution is designed to be used as an adjunct to the maximum parsimony method. When the algorithm is so used, the augmented maximum parsimony distances, far from being overestimates, are underestimates of the actual number of nucleotide substitutions which occur in Tateno and Nei's (1978) computer simulation by the Poisson process model, even when the simulation is carried out at two and a half times the sequence density. Although underestimates, our evidence shows that they are nevertheless more accurate than estimates obtained by a Poisson correction. In the maximum parsimony reconstruction, there is a bias towards overrepresenting the number of shared nucleotide identities between adjacent ancestral and descendant nodal sequences with the bias being stronger in those portions of the evolutionary tree sparser in sequence data. Because of this particular property of maximum parsimony reconstructed sequences, the conclusions of Tateno and Nei concerning the statistical properties of the populous path algorithm are invalid. We conclude that estimates of protein evolutionary rates by the maximum parsimony--populous path approach will become more accurate rather than less as larger numbers of closely related species are included in the analysis. More... »

PAGES

75-85

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01768027

DOI

http://dx.doi.org/10.1007/bf01768027

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003363091

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/660664


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleotides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics as Topic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wayne State University", 
          "id": "https://www.grid.ac/institutes/grid.254444.7", 
          "name": [
            "Department of Anatomy, Wayne State University , School of Medicine, 540 E. Canfield Avenue, 48201, Detroit, Michigan, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Czelusniak", 
        "givenName": "John", 
        "id": "sg:person.01030715246.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030715246.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wayne State University", 
          "id": "https://www.grid.ac/institutes/grid.254444.7", 
          "name": [
            "Department of Anatomy, Wayne State University , School of Medicine, 540 E. Canfield Avenue, 48201, Detroit, Michigan, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goodman", 
        "givenName": "Morris", 
        "id": "sg:person.01023304676.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023304676.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411935.b", 
          "name": [
            "Department of Pathology, The Johns Hopkins Hospital, 21205, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moore", 
        "givenName": "G. William", 
        "id": "sg:person.01032646746.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032646746.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00486096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001338981", 
          "https://doi.org/10.1007/bf00486096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00486096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001338981", 
          "https://doi.org/10.1007/bf00486096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(72)90327-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005183255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01796133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006238684", 
          "https://doi.org/10.1007/bf01796133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01796133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006238684", 
          "https://doi.org/10.1007/bf01796133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(72)90326-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007897490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01738879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012806789", 
          "https://doi.org/10.1007/bf01738879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01738879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012806789", 
          "https://doi.org/10.1007/bf01738879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(76)90193-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015108935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01732746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021358515", 
          "https://doi.org/10.1007/bf01732746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01732746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021358515", 
          "https://doi.org/10.1007/bf01732746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(73)90252-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021767153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/253603a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029629178", 
          "https://doi.org/10.1038/253603a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01795974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030956092", 
          "https://doi.org/10.1007/bf01795974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01795974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030956092", 
          "https://doi.org/10.1007/bf01795974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01743627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036181775", 
          "https://doi.org/10.1007/bf01743627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01743627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036181775", 
          "https://doi.org/10.1007/bf01743627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(77)90314-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049117565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00393988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052718701", 
          "https://doi.org/10.1007/bf00393988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00393988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052718701", 
          "https://doi.org/10.1007/bf00393988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2412028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069920532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2412116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069920601"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1978-03", 
    "datePublishedReg": "1978-03-01", 
    "description": "Goodman et al.'s (1974) populous path algorithm for estimating hidden mutational change in protein evolution is designed to be used as an adjunct to the maximum parsimony method. When the algorithm is so used, the augmented maximum parsimony distances, far from being overestimates, are underestimates of the actual number of nucleotide substitutions which occur in Tateno and Nei's (1978) computer simulation by the Poisson process model, even when the simulation is carried out at two and a half times the sequence density. Although underestimates, our evidence shows that they are nevertheless more accurate than estimates obtained by a Poisson correction. In the maximum parsimony reconstruction, there is a bias towards overrepresenting the number of shared nucleotide identities between adjacent ancestral and descendant nodal sequences with the bias being stronger in those portions of the evolutionary tree sparser in sequence data. Because of this particular property of maximum parsimony reconstructed sequences, the conclusions of Tateno and Nei concerning the statistical properties of the populous path algorithm are invalid. We conclude that estimates of protein evolutionary rates by the maximum parsimony--populous path approach will become more accurate rather than less as larger numbers of closely related species are included in the analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01768027", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1016442", 
        "issn": [
          "0022-2844", 
          "1432-1432"
        ], 
        "name": "Journal of Molecular Evolution", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "On investigating the statistical properties of the populous path algorithm by computer simulation", 
    "pagination": "75-85", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "10053070ff378e39751926af00addb1433a1bb21b06bc0c4a5c4c9e7c185c7c7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "660664"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0360051"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01768027"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003363091"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01768027", 
      "https://app.dimensions.ai/details/publication/pub.1003363091"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89789_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01768027"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01768027'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01768027'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01768027'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01768027'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      50 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01768027 schema:about N979caa4945c54494b31baa9df535f2b1
2 Nb095fd1108e6491d9030413112b6a8a1
3 Nc0ada8e68e174ff591ce50fc2dfc449f
4 Nc441e980f5b84426b410e5e9729a46ce
5 Neecd3d40a54946d89e07f69823e5da49
6 Nf6986d7083824af8a43916ce2df95d5e
7 anzsrc-for:08
8 anzsrc-for:0801
9 schema:author Nbba16ddcb45443d18a1906ea46d7b53c
10 schema:citation sg:pub.10.1007/bf00393988
11 sg:pub.10.1007/bf00486096
12 sg:pub.10.1007/bf01732746
13 sg:pub.10.1007/bf01738879
14 sg:pub.10.1007/bf01743627
15 sg:pub.10.1007/bf01795974
16 sg:pub.10.1007/bf01796133
17 sg:pub.10.1038/253603a0
18 https://doi.org/10.1016/0022-2836(72)90326-9
19 https://doi.org/10.1016/0022-2836(72)90327-0
20 https://doi.org/10.1016/0022-2836(76)90193-5
21 https://doi.org/10.1016/0022-5193(73)90252-x
22 https://doi.org/10.1016/0022-5193(77)90314-9
23 https://doi.org/10.2307/2412028
24 https://doi.org/10.2307/2412116
25 schema:datePublished 1978-03
26 schema:datePublishedReg 1978-03-01
27 schema:description Goodman et al.'s (1974) populous path algorithm for estimating hidden mutational change in protein evolution is designed to be used as an adjunct to the maximum parsimony method. When the algorithm is so used, the augmented maximum parsimony distances, far from being overestimates, are underestimates of the actual number of nucleotide substitutions which occur in Tateno and Nei's (1978) computer simulation by the Poisson process model, even when the simulation is carried out at two and a half times the sequence density. Although underestimates, our evidence shows that they are nevertheless more accurate than estimates obtained by a Poisson correction. In the maximum parsimony reconstruction, there is a bias towards overrepresenting the number of shared nucleotide identities between adjacent ancestral and descendant nodal sequences with the bias being stronger in those portions of the evolutionary tree sparser in sequence data. Because of this particular property of maximum parsimony reconstructed sequences, the conclusions of Tateno and Nei concerning the statistical properties of the populous path algorithm are invalid. We conclude that estimates of protein evolutionary rates by the maximum parsimony--populous path approach will become more accurate rather than less as larger numbers of closely related species are included in the analysis.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N83f70bb476b745698f1b418e78731f31
32 Nfdfe4034e2eb440c999dfd9626888757
33 sg:journal.1016442
34 schema:name On investigating the statistical properties of the populous path algorithm by computer simulation
35 schema:pagination 75-85
36 schema:productId N0fa41b6ecae64e0aaf87aedab0cff57f
37 N7212e021b0d049d8bb6043fa331e35c1
38 N79b626306aa943cda02141585d993f9a
39 Nd95b0f1a0c1c45848964d765c794686e
40 Nda8e2fa51f9b4f8e9325eb8b8bbcf83b
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003363091
42 https://doi.org/10.1007/bf01768027
43 schema:sdDatePublished 2019-04-11T09:50
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Ned312a25345e4f839efeb3a37f274878
46 schema:url http://link.springer.com/10.1007/BF01768027
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0fa41b6ecae64e0aaf87aedab0cff57f schema:name dimensions_id
51 schema:value pub.1003363091
52 rdf:type schema:PropertyValue
53 N7212e021b0d049d8bb6043fa331e35c1 schema:name readcube_id
54 schema:value 10053070ff378e39751926af00addb1433a1bb21b06bc0c4a5c4c9e7c185c7c7
55 rdf:type schema:PropertyValue
56 N79b626306aa943cda02141585d993f9a schema:name nlm_unique_id
57 schema:value 0360051
58 rdf:type schema:PropertyValue
59 N82cdfda23cca40b9a643f7a6b2271cf5 rdf:first sg:person.01023304676.50
60 rdf:rest Naf909b78aae44f37bd505b1daa434129
61 N83f70bb476b745698f1b418e78731f31 schema:volumeNumber 11
62 rdf:type schema:PublicationVolume
63 N979caa4945c54494b31baa9df535f2b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Statistics as Topic
65 rdf:type schema:DefinedTerm
66 Naf909b78aae44f37bd505b1daa434129 rdf:first sg:person.01032646746.00
67 rdf:rest rdf:nil
68 Nb095fd1108e6491d9030413112b6a8a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Proteins
70 rdf:type schema:DefinedTerm
71 Nbba16ddcb45443d18a1906ea46d7b53c rdf:first sg:person.01030715246.27
72 rdf:rest N82cdfda23cca40b9a643f7a6b2271cf5
73 Nc0ada8e68e174ff591ce50fc2dfc449f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Computers
75 rdf:type schema:DefinedTerm
76 Nc441e980f5b84426b410e5e9729a46ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Mutation
78 rdf:type schema:DefinedTerm
79 Nd95b0f1a0c1c45848964d765c794686e schema:name pubmed_id
80 schema:value 660664
81 rdf:type schema:PropertyValue
82 Nda8e2fa51f9b4f8e9325eb8b8bbcf83b schema:name doi
83 schema:value 10.1007/bf01768027
84 rdf:type schema:PropertyValue
85 Ned312a25345e4f839efeb3a37f274878 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Neecd3d40a54946d89e07f69823e5da49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Biological Evolution
89 rdf:type schema:DefinedTerm
90 Nf6986d7083824af8a43916ce2df95d5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Nucleotides
92 rdf:type schema:DefinedTerm
93 Nfdfe4034e2eb440c999dfd9626888757 schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
96 schema:name Information and Computing Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
99 schema:name Artificial Intelligence and Image Processing
100 rdf:type schema:DefinedTerm
101 sg:journal.1016442 schema:issn 0022-2844
102 1432-1432
103 schema:name Journal of Molecular Evolution
104 rdf:type schema:Periodical
105 sg:person.01023304676.50 schema:affiliation https://www.grid.ac/institutes/grid.254444.7
106 schema:familyName Goodman
107 schema:givenName Morris
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023304676.50
109 rdf:type schema:Person
110 sg:person.01030715246.27 schema:affiliation https://www.grid.ac/institutes/grid.254444.7
111 schema:familyName Czelusniak
112 schema:givenName John
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030715246.27
114 rdf:type schema:Person
115 sg:person.01032646746.00 schema:affiliation https://www.grid.ac/institutes/grid.411935.b
116 schema:familyName Moore
117 schema:givenName G. William
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032646746.00
119 rdf:type schema:Person
120 sg:pub.10.1007/bf00393988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052718701
121 https://doi.org/10.1007/bf00393988
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf00486096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001338981
124 https://doi.org/10.1007/bf00486096
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf01732746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021358515
127 https://doi.org/10.1007/bf01732746
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf01738879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012806789
130 https://doi.org/10.1007/bf01738879
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf01743627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036181775
133 https://doi.org/10.1007/bf01743627
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf01795974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030956092
136 https://doi.org/10.1007/bf01795974
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/bf01796133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006238684
139 https://doi.org/10.1007/bf01796133
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/253603a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029629178
142 https://doi.org/10.1038/253603a0
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0022-2836(72)90326-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007897490
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/0022-2836(72)90327-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005183255
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0022-2836(76)90193-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015108935
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/0022-5193(73)90252-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021767153
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/0022-5193(77)90314-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049117565
153 rdf:type schema:CreativeWork
154 https://doi.org/10.2307/2412028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069920532
155 rdf:type schema:CreativeWork
156 https://doi.org/10.2307/2412116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069920601
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.254444.7 schema:alternateName Wayne State University
159 schema:name Department of Anatomy, Wayne State University , School of Medicine, 540 E. Canfield Avenue, 48201, Detroit, Michigan, USA
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.411935.b schema:alternateName Johns Hopkins Hospital
162 schema:name Department of Pathology, The Johns Hopkins Hospital, 21205, Baltimore, Maryland, USA
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...